4 resultados para Physical mobility
em Universidad Politécnica de Madrid
Resumo:
Electric-powered wheelchairs improve the mobility of people with physical disabilities, but the problem to deal with certain architectural barriers has not been resolved satisfactorily. In order to solve this problem, a stair-climbing mobility system (SCMS) was developed. This paper presents a practical dynamic control system that allows the SCMS to exhibit a successful climbing process when faced with typical architectural barriers such as curbs, ramps, or staircases. The implemented control system depicts high simplicity, computational efficiency, and the possibility of an easy implementation in a microprocessor-/microcontroller-based system. Finally, experiments are included to support theoretical results.
Resumo:
Based on our previous knowledge on Cu/Nb nanoscale metallic multilayers (NMMs), Cu/WNMMs show a good potential for applications as heat skins in plasma experiments and armors, and it could be expected that the substitution of Nb byWwould increase the strength, particularly at high temperatures. To check this hypothesis, Cu/WNMMs with individual layer thicknesses ranging between 5 and 30 nm were deposited by physical vapour deposition, and their mechanical properties were measured by nanoindentation. The results showed that, contrary to Cu/Nb NMMs, the hardness was independent of the layer thickness and decreased rapidlywith temperature, especially above 200 °C. This behavior was attributed to the growth morphology of theWlayers aswell as the jagged Cu/W interface, both a consequence of the lowW adatom mobility during deposition. Therefore, future efforts on the development of Cu/Wmultilayers should concentrate on optimization of theWdeposition parameters via substrate heating and/or ion assisted deposition to increase the W adatom mobility during deposition.
Resumo:
The paper describes some relevant results of an on-going research aiming to elaborate a methodology to help the mobility management in natural parks, compatible with their protection missions: it has been developed a procedure to reproduce the mobility-environment relationships in various operational conditions. The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The work is articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (air pollution and noise only); 6) identification of mitigation measures to be potentially applied. The whole methodology has been tested and validated on Italian case studies: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been represented in an origin-destination matrix. By means of an assignment model the flows have been distributed and the corresponding average speeds to quantify gaseous and noise emissions was calculated, the criticalities in the reference scenario have been highlighted, as well as some alternative scenarios, including both operational and infrastructural measures have been identified. The comparison between projects and reference scenario allowed the quantification of effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The preliminary work was articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (limited to air pollution and noise); 6) identification of mitigation measures to the potentially applied. The whole methodology has been firstly tested on the case study of the National Park of ?Gran Sasso and Monti della Laga? and further validated on the National Park of ?Gargano?, both located Italy: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been synthetically represented in an origin-destination matrix. By means of an assignment model it has been determined the distribution of flows and the corresponding average speeds to quantify gaseous and noise emissions. On this basis the environmental criticalities in the reference scenario have been highlighted, as well as some alternative scenarios including both operational and infrastructural measures have been identified. The comparison between the projects and the reference scenario allowed the quantification of the effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.