3 resultados para Phylogenetic analyses

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusarium equiseti and Fusarium acuminatum are toxigenic species that contaminate cereal crops from diverse climatic regions. They are common in Spanish cereals. The information available on their phylogenetics and toxigenic profiles is, however, insufficient to assist risk evaluation. In this work, phylogenetic analyses were performed using partial sequences of the translation elongation factor gene (EF-1a) of F. equiseti and F. acuminatum strains isolated from barley and wheat from Spain and other countries. The Northern and Southern European F. equiseti strains largely separated into two phylogenetically distinct clusters. This suggests the existence of two distinct populations within this species, explaining its presence in these regions of markedly different climate. Production of type A and B trichothecenes by the Spanish strains, examined in wheat cultures using a multitoxin analytical method, indicated that F. equiseti could produce deoxynivalenol and nivalenol and other trichothecenes, at concentrations that might represent a significant risk of toxin contamination for Southern European cereals. F. acuminatum showed low intraspecific genetic variability and 58% of the strains could produce deoxynivalenol at low level. Neither species was found to produce T-2 or HT-2 toxins. The present results provide important phylogenetic and toxigenic information essential for the accurate prediction of toxigenic risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure–function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al3+ sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure–function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al3+ sensing.