106 resultados para Photovoltaics

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate band solar cell [1] has been proposed as a concept able to substantially enhance the efficiency limit of an ordinary single junction solar cell. If a band permitted for electrons is inserted within the forbidden band of a semiconductor then a novel path for photo generation is open: electron hole pairs may be formed by the successive absorption of two sub band gap photons using the intermediate band (IB) as a stepping stone. While the increase of the photovoltaic (PV) current is not a big achievement —it suffices to reduce the band gap— the achievement of this extra current at high voltage is the key of the IB concept. In ordinary cells the voltage is limited by the band gap so that reducing it would also reduce the band gap. In the intermediate band solar cell the high voltage is produced when the IB is permitted to have a Quasi Fermi Level (QFL) different from those of the Conduction Band (CB) and the Valence Band (VB). For it the cell must be properly isolated from the external contacts, which is achieved by putting the IB material between two n- and p-type ordinary semiconductors [2]. Efficiency thermodynamic limit of 63% is obtained for the IB solar cell1 vs. the 40% obtained [3] for ordinary single junction solar cells. Detailed information about the IB solar cells can be found elsewhere [4].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a novel optical design for the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) that utilizes a built-in spectrum splitting concept is presented. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it. The POE and SOE perform Köhler integration to produce light homogenization on the receiver. The system uses a combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-PointContact (BPC) silicon cell for efficient spectral utilization, and an external confinement technique for recovering the 3J cell’s reflection. A design target of an “equivalent” cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level greater than 500X with a wide acceptance angle of ±1º. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of ±1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the concept of integrating tracking in concentrating photovoltaics is briefly summarized and possible fields of application are classified. A previously proposed system setup relies on the use of two rotational symmetric laterally moving plano-convex lenses to achieve 500× concentration over an angular range of ±24 ◦ . However, the circular lens apertures are less suitable for application in lens array structures. A new design algorithm based on the Simultaneous Multiple Surface algorithm in three dimensions (SMS3D) demonstrates the ability to address this problem. Performance simulations show that the resulting non-rotational symmetric design outperforms its conventional rotational symmetric counterpart

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An n(++)-GaAs/p(++)-AlGaAs tunnel junction with a peak current density of 10 100Acm(-2) is developed. This device is a tunnel junction for multijunction solar cells, grown lattice-matched on standard GaAs or Ge substrates, with the highest peak current density ever reported. The voltage drop for a current density equivalent to the operation of the multijunction solar cell up to 10 000 suns is below 5 mV. Trap-assisted tunnelling is proposed to be behind this performance, which cannot be justified by simple band-to-band tunnelling. The metal-organic vapour-phase epitaxy growth conditions, which are in the limits of the transport-limited regime, and the heavy tellurium doping levels are the proposed origins of the defects enabling trap-assisted tunnelling. The hypothesis of trap-assisted tunnelling is supported by the observed annealing behaviour of the tunnel junctions, which cannot be explained in terms of dopant diffusion or passivation. For the integration of these tunnel junctions into a triple-junction solar cell, AlGaAs barrier layers are introduced to suppress the formation of parasitic junctions, but this is found to significantly degrade the performance of the tunnel junctions. However, the annealed tunnel junctions with barrier layers still exhibit a peak current density higher than 2500Acm(-2) and a voltage drop at 10 000 suns of around 20 mV, which are excellent properties for tunnel junctions and mean they can serve as low-loss interconnections in multijunction solar cells working at ultra-high concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III?V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz?Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IBPOWER is a Project awarded under the 7th European Framework Programme that aims to advance research on intermediate band solar cells (IBSCs). These are solar cells conceived to absorb below bandgap energy photons by means of an electronic energy band that is located within the semiconductor bandgap, whilst producing photocurrent with output voltage still limited by the total semiconductor bandgap. IBPOWER employs two basic strategies for implementing the IBSC concept. The first is based on the use of quantum dots, the IB arising from the confined energy levels of the electrons in the dots. Quantum dots have led to devices that demonstrate the physical operation principles of the IB concept and have allowed identification of the problems to be solved to achieve actual high efficiencies. The second approach is based on the creation of bulk intermediate band materials by the insertion of an appropriate impurity into a bulk semiconductor. Under this approach it is expected that, when inserted at high densities, these impurities will find it difficult to capture electrons by producing a breathing mode and will cease behaving as non-radiative recombination centres. Towards this end the following systems are being investigated: a) Mn: In1-xGax N; b) transition metals in GaAs and c) thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the concept of tracking integration in concentrating photovoltaics (CPV) is revisited and developed further. With respect to conventional CPV, tracking integration eliminates the clear separation between stationary units of optics and solar cells, and external solar trackers. This approach is capable of further increasing the concentration ratio and makes high concentrating photovoltaics (> 500x) available for single-axis tracker installations. The reduced external solar tracking effort enables possibly cheaper and more compact installations. Our proposed optical system uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. The lateral movement allows to combine both steering and concentration of the incident direct sun light. Given the specific symmetry conditions of the underlying optical design problem, rotational symmetric lenses are not ideal for this application. For this type of design problems, a new free-form optics design method presented in previous papers perfectly matches the symmetry. It is derived directly from Fermat's principle, leading to sets of functional differential equations allowing the successive calculation of the Taylor series coeficients of each implicit surface function up to very high orders. For optical systems designed for wide field of view and with clearly separated optical surfaces, this new analytic design method has potential application in both fields of nonimaging and imaging optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel photovoltaic concentrator enables highly uniform irradiance on a small number of efficient solar cells. The maximum electrical power of a photovoltaic (PV) energy installation depends on three factors: the available irradiance, the size of the systems collecting sunlight, and the rate at which the device transforms light into electricity (the conversion efficiency). Developers can maximize the irradiance by carefully selecting the site and orientation of the solar facility. But they can only expand their sunlight collection systems for standard flat plate PV devices by increasing the number of solar cells, at greater cost. Here, we consider the advantages of an alternative PV system that produces more energy without increasing the number of cells used (actually, reducing it), by improving the conversion rates.We also present a new device that may enhance the commercial viability of such technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermediate band solar cell (IBSC), the multiple exciton generation solar cell (MEGSC) and the hot carrier solar cell (HCSC) are three novel concepts in photovoltaics which aim to achieve high efficiency devices. In this paper we assess to what extent their physical principles of operation have been experimentally verified. It is found that there is experimental evidence supporting the underlying theory for all three.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Europe-Japan Collaborative Research Project on Concentrator Photovoltaics (CPV) has been initiated under support by the EC (European Commission) and NEDO (New Energy and Industrial Technology Development Organization) since June 2011. This is project (NGCPV Project; a New Generation of Concentrator PhotoVoltaic cells, modules and systems) is aiming to accelerate the move to very high efficiency and lower cost CPV technologies and to enhance widespread deployment of CPV systems. 7 organizations such as UPM, FhG-ISE Imperial College, BSQ, CEA-INES, ENEA, and PSE in Europe and 9 organizations such as TTI, Univ. Tokyo, AIST, Sharp Co. Daido Steel Co., Kobe Univ., Miyazaki Univ., Asahi Kasei Co., and Takano Co. participate in this project. The targets of this project are 1) to develop world-record efficiency CPV cells of more than 45%, 2) to develop world-record efficiency CPV modules of 35%, 3) to establish standard measurements of CPV cells and modules, 4) to install 50kW CPV system in Spain, to carry out field test of CPV system and to manage power generation of CPV systems, and 5) to develop high-efficiency and low-cost new materials and structure cells such as III-V-N, III-V-on-Si tandem, quantum dots and wells. This paper presents outline of this project and most recent results such as world record efficiency (37.9% under 1-sun) cell and high-efficiency (43.5% under 240-306 suns) concentrator cell with inverted epitaxial grown InGaP/GaAs/InGaAs 3-junction solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uncertainty associated to the forecast of photovoltaic generation is a major drawback for the widespread introduction of this technology into electricity grids. This uncertainty is a challenge in the design and operation of electrical systems that include photovoltaic generation. Demand-Side Management (DSM) techniques are widely used to modify energy consumption. If local photovoltaic generation is available, DSM techniques can use generation forecast to schedule the local consumption. On the other hand, local storage systems can be used to separate electricity availability from instantaneous generation; therefore, the effects of forecast error in the electrical system are reduced. The effects of uncertainty associated to the forecast of photovoltaic generation in a residential electrical system equipped with DSM techniques and a local storage system are analyzed in this paper. The study has been performed in a solar house that is able to displace a residential user?s load pattern, manage local storage and estimate forecasts of electricity generation. A series of real experiments and simulations have carried out on the house. The results of this experiments show that the use of Demand Side Management (DSM) and local storage reduces to 2% the uncertainty on the energy exchanged with the grid. In the case that the photovoltaic system would operate as a pure electricity generator feeding all generated electricity into grid, the uncertainty would raise to around 40%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photovoltaic (PV) hybrid system combines PV with other forms of electricity generation, usually a diesel generator. The system presented in this paper uses concentration photovoltaic (CPV) as the main generator in combination with a storage system and the grid, configured as the backup power supply. The load of the system consists of an air conditioning system of an office building. This paper presents the results obtained from the first months of operation of the CPV hybrid system installed at Instituto de Sistemas Fotovoltaicos de Concentración facilities together with exhaustive simulations in order to model the system behaviour and be able to improve the self-consumption ratio. This system represents a first approach to the use of a CPV in office buildings complemented by an existing AC-coupled hybrid system. The contribution of this paper to the analysis of this new system and the existing tools available for its simulation, at least a part of it, can be considered as a starting point for the development of these kinds of systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building integrated photovoltaic (BIPV) systems are a relevant application of photovoltaics. In countries belonging to the International Energy Agency countries, 24% of total installed PV power corresponds to BIPV systems. Electricity losses caused by shadows over the PV generator have a significant impact on the performance of BIPV systems, being the major source of electricity losses. This paper presents a methodology to estimate electricity produced by BIPV systems which incorporates a model for shading losses. The proposed methodology has been validated on a one year study with real data from two similar PV systems placed on the south façade of a building belonging to the Technical University of Madrid. This study has covered all weather conditions: clear, partially overcast and fully overcast sky. Results of this study are shown at different time scales, resulting that the errors committed by the best performing model are below 1% and 3% in annual and daily electricity estimation. The use of models which account for the reduced performance at low irradiance levels also improves the estimation of generated electricity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.