34 resultados para Photosynthetic nitrogen-use efficiency

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to reduce nitrogen (N) fertilizer pollution strengthens the importance of improving the utilization efficiency of applied N to crops. This requires knowledge of crop N uptake characteristics and how fertilization management affects it. A three-year field experiment was conducted from May to September in central Spain to investigate the influence of different N rates, which ranged from 11 to 393 kg ha-1, applied through drip irrigation, on the dynamics of N uptake, nitrogen use efficiency (NUE), fruit yield and quality of a ?Piel de sapo? melon crop (Cucumis melo L. cv. Sancho). Both N concentration and N content increased in different plant parts with the N rate. Leaves had the highest N concentration, which declined by 40-50% from 34-41 days after transplanting (DAT), while the highest N uptake rate was observed from 30-35 to 70-80 DAT, coinciding with fruit development. In each year, NUE declined with increasing N rate. With N fertilizer applications close to the optimum N rate of 90-100 kg ha-1, the fruits removed approximately 60 kg N ha-1, and the amount of N in the crop residue was about 80 kg N ha-1; this serves to replenish the organic nutrient pool in the soil and may be used by subsequent crops following mineralization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La caracterización de los cultivos cubierta (cover crops) puede permitir comparar la idoneidad de diferentes especies para proporcionar servicios ecológicos como el control de la erosión, el reciclado de nutrientes o la producción de forrajes. En este trabajo se estudiaron bajo condiciones de campo diferentes técnicas para caracterizar el dosel vegetal con objeto de establecer una metodología para medir y comparar las arquitecturas de los cultivos cubierta más comunes. Se estableció un ensayo de campo en Madrid (España central) para determinar la relación entre el índice de área foliar (LAI) y la cobertura del suelo (GC) para un cultivo de gramínea, uno de leguminosa y uno de crucífera. Para ello se sembraron doce parcelas con cebada (Hordeum vulgare L.), veza (Vicia sativa L.), y colza (Brassica napus L.). En 10 fechas de muestreo se midieron el LAI (con estimaciones directas y del LAI-2000), la fracción interceptada de la radiación fotosintéticamente activa (FIPAR) y la GC. Un experimento de campo de dos años (Octubre-Abril) se estableció en la misma localización para evaluar diferentes especies (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) y cultivares (20) en relación con su idoneidad para ser usadas como cultivos cubierta. La GC se monitorizó mediante análisis de imágenes digitales con 21 y 22 muestreos, y la biomasa se midió 8 y 10 veces, respectivamente para cada año. Un modelo de Gompertz caracterizó la cobertura del suelo hasta el decaimiento observado tras las heladas, mientras que la biomasa se ajustó a ecuaciones de Gompertz, logísticas y lineales-exponenciales. Al final del experimento se determinaron el C, el N y el contenido en fibra (neutrodetergente, ácidodetergente y lignina), así como el N fijado por las leguminosas. Se aplicó el análisis de decisión multicriterio (MCDA) con objeto de obtener un ranking de especies y cultivares de acuerdo con su idoneidad para actuar como cultivos cubierta en cuatro modalidades diferentes: cultivo de cobertura, cultivo captura, abono verde y forraje. Las asociaciones de cultivos leguminosas con no leguminosas pueden afectar al crecimiento radicular y a la absorción de N de ambos componentes de la mezcla. El conocimiento de cómo los sistemas radiculares específicos afectan al crecimiento individual de las especies es útil para entender las interacciones en las asociaciones, así como para planificar estrategias de cultivos cubierta. En un tercer ensayo se combinaron estudios en rhizotrones con extracción de raíces e identificación de especies por microscopía, así como con estudios de crecimiento, absorción de N y 15N en capas profundas del suelo. Las interacciones entre raíces en su crecimiento y en el aprovisionamiento de N se estudiaron para dos de los cultivares mejor valorados en el estudio previo: uno de cebada (Hordeum vulgare L. cv. Hispanic) y otro de veza (Vicia sativa L. cv. Aitana). Se añadió N en dosis de 0 (N0), 50 (N1) y 150 (N2) kg N ha-1. Como resultados del primer estudio, se ajustaron correctamente modelos lineales y cuadráticos a la relación entre la GC y el LAI para todos los cultivos, pero en la gramínea alcanzaron una meseta para un LAI>4. Antes de alcanzar la cobertura total, la pendiente de la relación lineal entre ambas variables se situó en un rango entre 0.025 y 0.030. Las lecturas del LAI-2000 estuvieron correlacionadas linealmente con el LAI, aunque con tendencia a la sobreestimación. Las correcciones basadas en el efecto de aglutinación redujeron el error cuadrático medio del LAI estimado por el LAI-2000 desde 1.2 hasta 0.5 para la crucífera y la leguminosa, no siendo efectivas para la cebada. Esto determinó que para los siguientes estudios se midieran únicamente la GC y la biomasa. En el segundo experimento, las gramíneas alcanzaron la mayor cobertura del suelo (83-99%) y la mayor biomasa (1226-1928 g m-2) al final del mismo. Con la mayor relación C/N (27-39) y contenido en fibra digestible (53-60%) y la menor calidad de residuo (~68%). La mostaza presentó elevadas GC, biomasa y absorción de N en el año más templado en similitud con las gramíneas, aunque escasa calidad como forraje en ambos años. La veza presentó la menor absorción de N (2.4-0.7 g N m-2) debido a la fijación de N (9.8-1.6 g N m-2) y escasa acumulación de N. El tiempo térmico hasta alcanzar el 30% de GC constituyó un buen indicador de especies de rápida cubrición. La cuantificación de las variables permitió hallar variabilidad entre las especies y proporcionó información para posteriores decisiones sobre la selección y manejo de los cultivos cubierta. La agregación de dichas variables a través de funciones de utilidad permitió confeccionar rankings de especies y cultivares para cada uso. Las gramíneas fueron las más indicadas para los usos de cultivo de cobertura, cultivo captura y forraje, mientras que las vezas fueron las mejor como abono verde. La mostaza alcanzó altos valores como cultivo de cobertura y captura en el primer año, pero el segundo decayó debido a su pobre actuación en los inviernos fríos. Hispanic fue el mejor cultivar de cebada como cultivo de cobertura y captura, mientras que Albacete como forraje. El triticale Titania alcanzó la posición más alta como cultiva de cobertura, captura y forraje. Las vezas Aitana y BGE014897 mostraron buenas aptitudes como abono verde y cultivo captura. El MCDA permitió la comparación entre especies y cultivares proporcionando información relevante para la selección y manejo de cultivos cubierta. En el estudio en rhizotrones tanto la mezcla de especies como la cebada alcanzaron mayor intensidad de raíces (RI) y profundidad (RD) que la veza, con valores alrededor de 150 cruces m-1 y 1.4 m respectivamente, comparados con 50 cruces m-1 y 0.9 m para la veza. En las capas más profundas del suelo, la asociación de cultivos mostró valores de RI ligeramente mayores que la cebada en monocultivo. La cebada y la asociación obtuvieron mayores valores de densidad de raíces (RLD) (200-600 m m-3) que la veza (25-130) entre 0.8 y 1.2 m de profundidad. Los niveles de N no mostraron efectos claros en RI, RD ó RLD, sin embargo, el incremento de N favoreció la proliferación de raíces de veza en la asociación en capas profundas del suelo, con un ratio cebada/veza situado entre 25 a N0 y 5 a N2. La absorción de N de la cebada se incrementó en la asociación a expensas de la veza (de ~100 a 200 mg planta-1). Las raíces de cebada en la asociación absorbieron también más nitrógeno marcado de las capas profundas del suelo (0.6 mg 15N planta-1) que en el monocultivo (0.3 mg 15N planta-1). ABSTRACT Cover crop characterization may allow comparing the suitability of different species to provide ecological services such as erosion control, nutrient recycling or fodder production. Different techniques to characterize plant canopy were studied under field conditions in order to establish a methodology for measuring and comparing cover crops canopies. A field trial was established in Madrid (central Spain) to determine the relationship between leaf area index (LAI) and ground cover (GC) in a grass, a legume and a crucifer crop. Twelve plots were sown with either barley (Hordeum vulgare L.), vetch (Vicia sativa L.), or rape (Brassica napus L.). On 10 sampling dates the LAI (both direct and LAI-2000 estimations), fraction intercepted of photosynthetically active radiation (FIPAR) and GC were measured. A two-year field experiment (October-April) was established in the same location to evaluate different species (Hordeum vulgare L., Secale cereale L., x Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars (20) according to their suitability to be used as cover crops. GC was monitored through digital image analysis with 21 and 22 samples, and biomass measured 8 and 10 times, respectively for each season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment C, N, and fiber (neutral detergent, acid and lignin) contents, and the N fixed by the legumes were determined. Multicriteria decision analysis (MCDA) was applied in order to rank the species and cultivars according to their suitability to perform as cover crops in four different modalities: cover crop, catch crop, green manure and fodder. Intercropping legumes and non-legumes may affect the root growth and N uptake of both components in the mixture. The knowledge of how specific root systems affect the growth of the individual species is useful for understanding the interactions in intercrops as well as for planning cover cropping strategies. In a third trial rhizotron studies were combined with root extraction and species identification by microscopy and with studies of growth, N uptake and 15N uptake from deeper soil layers. The root interactions of root growth and N foraging were studied for two of the best ranked cultivars in the previous study: a barley (Hordeum vulgare L. cv. Hispanic) and a vetch (Vicia sativa L. cv. Aitana). N was added at 0 (N0), 50 (N1) and 150 (N2) kg N ha-1. As a result, linear and quadratic models fitted to the relationship between the GC and LAI for all of the crops, but they reached a plateau in the grass when the LAI > 4. Before reaching full cover, the slope of the linear relationship between both variables was within the range of 0.025 to 0.030. The LAI-2000 readings were linearly correlated with the LAI but they tended to overestimation. Corrections based on the clumping effect reduced the root mean square error of the estimated LAI from the LAI-2000 readings from 1.2 to less than 0.50 for the crucifer and the legume, but were not effective for barley. This determined that in the following studies only the GC and biomass were measured. In the second experiment, the grasses reached the highest ground cover (83- 99%) and biomass (1226-1928 g/m2) at the end of the experiment. The grasses had the highest C/N ratio (27-39) and dietary fiber (53-60%) and the lowest residue quality (~68%). The mustard presented high GC, biomass and N uptake in the warmer year with similarity to grasses, but low fodder capability in both years. The vetch presented the lowest N uptake (2.4-0.7 g N/m2) due to N fixation (9.8-1.6 g N/m2) and low biomass accumulation. The thermal time until reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crops selection and management. Aggregation of these variables through utility functions allowed ranking species and cultivars for each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while the vetches were the best as green manures. The mustard attained high ranks as cover and catch crop the first season, but the second decayed due to low performance in cold winters. Hispanic was the most suitable barley cultivar as cover and catch crop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop and fodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. MCDA allowed comparison among species and cultivars and might provide relevant information for cover crops selection and management. In the rhizotron study the intercrop and the barley attained slightly higher root intensity (RI) and root depth (RD) than the vetch, with values around 150 crosses m-1 and 1.4 m respectively, compared to 50 crosses m-1 and 0.9 m for the vetch. At deep soil layers, intercropping showed slightly larger RI values compared to the sole cropped barley. The barley and the intercropping had larger root length density (RLD) values (200-600 m m-3) than the vetch (25-130) at 0.8-1.2 m depth. The topsoil N supply did not show a clear effect on the RI, RD or RLD; however increasing topsoil N favored the proliferation of vetch roots in the intercropping at deep soil layers, with the barley/vetch root ratio ranging from 25 at N0 to 5 at N2. The N uptake of the barley was enhanced in the intercropping at the expense of the vetch (from ~100 mg plant-1 to 200). The intercropped barley roots took up more labeled nitrogen (0.6 mg 15N plant-1) than the sole-cropped barley roots (0.3 mg 15N plant-1) from deep layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation tillage and crop rotation have spread during the last decades because promotes several positive effects (increase of soil organic content, reduction of soil erosion, and enhancement of carbon sequestration) (Six et al., 2004). However, these benefits could be partly counterbalanced by negative effects on the release of nitrous oxide (N2O) (Linn and Doran, 1984). There is a lack of data on long-term tillage system study, particularly in Mediterranean agro-ecosystems. The aim of this study was to evaluate the effects of long-term (>17 year) tillage systems (no tillage (NT), minimum tillage (MT) and conventional tillage (CT)); and crop rotation (wheat (W)-vetch (V)-barley (B)) versus wheat monoculture (M) on N2O emissions. Additionally, Yield-scaled N2O emissions (YSNE) and N uptake efficiency (NUpE) were assessed for each treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water stress (WS) slows growth and photosynthesis (An), but most knowledge comes from short-time studies that do not account for longer term acclimation processes that are especially relevant in tree species. Using two Eucalyptus species that contrast in drought tolerance, we induced moderate and severe water deficits by withholding water until stomatal conductance (gsw) decreased to two pre-defined values for 24 d, WS was maintained at the target gsw for 29 d and then plants were re-watered. Additionally, we developed new equations to simulate the effect on mesophyll conductance (gm) of accounting for the resistance to refixation of CO2. The diffusive limitations to CO2, dominated by the stomata, were the most important constraints to An. Full recovery of An was reached after re-watering, characterized by quick recovery of gm and even higher biochemical capacity, in contrast to the slower recovery of gsw. The acclimation to long-term WS led to decreased mesophyll and biochemical limitations, in contrast to studies in which stress was imposed more rapidly. Finally, we provide evidence that higher gm under WS contributes to higher intrinsic water-use efficiency (iWUE) and reduces the leaf oxidative stress, highlighting the importance of gm as a target for breeding/genetic engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the assessment of the irrigation water use has been carried out in the Spanish irrigation District “Río Adaja” that has analyzed the water use efficiency and the water productivity indicators for the main crops for three years: 2010-2011, 2011-2012 and 2012-2013. A soil water balance model was applied taking into ccount climatic data for the nearby weather station and soil properties. Crop water requirements were calculated by the FAO Penman- Monteith with the application of the dual crop coefficient and by considering the readily vailable soil water content (RAW) concept. Likewise, productivity was measured by the indexes: annual relative irrigation supply (ARIS), annual relative water supply (ARWS), relative rainfall supply (RRS), the water productivity (WP), the evapotranspiration water productivity (ETWP), and the irrigation water productivity (IWP. The results show that in most crops deficit irrigation was applied (ARIS<1) in the first two years however, the IWP improved. This was higher in 2010-2011 which corresponded to the highest effective precipitation Pe. In general, the IWP (€.m-3) varied amongcrops but crops such as: onion (4.14, 1.98 and 2.77 respectively for the three years), potato (2.79, 1.69 and 1.62 respectively for the three years), carrot (1.37, 1.70 and 1.80 respectively for the three years) and barley (1.21, 1.16 and 0.68 respectively for the three years) showed the higher values. Thus, it is highlighted the y could be included into the cropping pattern which would maximize the famer’s gross income in the irrigation district.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El óxido nitroso (N2O) es un potente gas de efecto invernadero (GHG) proveniente mayoritariamente de la fertilización nitrogenada de los suelos agrícolas. Identificar estrategias de manejo de la fertilización que reduzcan estas emisiones sin suponer un descenso de los rendimientos es vital tanto a nivel económico como medioambiental. Con ese propósito, en esta Tesis se han evaluado: (i) estrategias de manejo directo de la fertilización (inhibidores de la nitrificación/ureasa); y (ii) interacciones de los fertilizantes con (1) el manejo del agua, (2) residuos de cosecha y (3) diferentes especies de plantas. Para conseguirlo se llevaron a cabo meta-análisis, incubaciones de laboratorio, ensayos en invernadero y experimentos de campo. Los inhibidores de la nitrificación y de la actividad ureasa se proponen habitualmente como medidas para reducir las pérdidas de nitrógeno (N), por lo que su aplicación estaría asociada al uso eficiente del N por parte de los cultivos (NUE). Sin embargo, su efecto sobre los rendimientos es variable. Con el objetivo de evaluar en una primera fase su efectividad para incrementar el NUE y la productividad de los cultivos, se llevó a cabo un meta-análisis. Los inhibidores de la nitrificación dicyandiamide (DCD) y 3,4-dimetilepyrazol phosphate (DMPP) y el inhibidor de la ureasa N-(n-butyl) thiophosphoric triamide (NBPT) fueron seleccionados para el análisis ya que generalmente son considerados las mejores opciones disponibles comercialmente. Nuestros resultados mostraron que su uso puede ser recomendado con el fin de incrementar tanto el rendimiento del cultivo como el NUE (incremento medio del 7.5% y 12.9%, respectivamente). Sin embargo, se observó que su efectividad depende en gran medida de los factores medioambientales y de manejo de los estudios evaluados. Una mayor respuesta fue encontrada en suelos de textura gruesa, sistemas irrigados y/o en cultivos que reciben altas tasas de fertilizante nitrogenado. En suelos alcalinos (pH ≥ 8), el inhibidor de la ureasa NBPT produjo el mayor efecto. Dado que su uso representa un coste adicional para los agricultores, entender las mejores prácticas que permitan maximizar su efectividad es necesario para posteriormente realizar comparaciones efectivas con otras prácticas que incrementen la productividad de los cultivos y el NUE. En base a los resultados del meta-análisis, se seleccionó el NBPT como un inhibidor con gran potencial. Inicialmente desarrollado para reducir la volatilización de amoniaco (NH3), en los últimos años algunos investigadores han demostrado en estudios de campo un efecto mitigador de este inhibidor sobre las pérdidas de N2O provenientes de suelos fertilizados bajo condiciones de baja humedad del suelo. Dada la alta variabilidad de los experimentos de campo, donde la humedad del suelo cambia rápidamente, ha sido imposible entender mecanísticamente el potencial de los inhibidores de la ureasa (UIs) para reducir emisiones de N2O y su dependencia con respecto al porcentaje de poros llenos de agua del suelo (WFPS). Por lo tanto se realizó una incubación en laboratorio con el propósito de evaluar cuál es el principal mecanismo biótico tras las emisiones de N2O cuando se aplican UIs bajo diferentes condiciones de humedad del suelo (40, 60 y 80% WFPS), y para analizar hasta qué punto el WFPS regula el efecto del inhibidor sobre las emisiones de N2O. Un segundo UI (i.e. PPDA) fue utilizado para comparar el efecto del NBPT con el de otro inhibidor de la ureasa disponible comercialmente; esto nos permitió comprobar si el efecto de NBPT es específico de ese inhibidor o no. Las emisiones de N2O al 40% WFPS fueron despreciables, siendo significativamente más bajas que las de todos los tratamientos fertilizantes al 60 y 80% WFPS. Comparado con la urea sin inhibidor, NBPT+U redujo las emisiones de N2O al 60% WFPS pero no tuvo efecto al 80% WFPS. La aplicación de PPDA incrementó significativamente las emisiones con respecto a la urea al 80% WFPS mientras que no se encontró un efecto significativo al 60% WFPS. Al 80% WFPS la desnitrificación fue la principal fuente de las emisiones de N2O en todos los tratamientos mientras que al 60% tanto la nitrificación como la desnitrificación tuvieron un papel relevante. Estos resultados muestran que un correcto manejo del NBPT puede suponer una estrategia efectiva para mitigar las emisiones de N2O. Con el objetivo de trasladar nuestros resultados de los estudios previos a condiciones de campo reales, se desarrolló un experimento en el que se evaluó la efectividad del NBPT para reducir pérdidas de N y aumentar la productividad durante un cultivo de cebada (Hordeum vulgare L.) en secano Mediterráneo. Se determinó el rendimiento del cultivo, las concentraciones de N mineral del suelo, el carbono orgánico disuelto (DOC), el potencial de desnitrificación, y los flujos de NH3, N2O y óxido nítrico (NO). La adición del inhibidor redujo las emisiones de NH3 durante los 30 días posteriores a la aplicación de urea en un 58% y las emisiones netas de N2O y NO durante los 95 días posteriores a la aplicación de urea en un 86 y 88%, respectivamente. El uso de NBPT también incrementó el rendimiento en grano en un 5% y el consumo de N en un 6%, aunque ninguno de estos incrementos fue estadísticamente significativo. Bajo las condiciones experimentales dadas, estos resultados demuestran el potencial del inhibidor de la ureasa NBPT para mitigar las emisiones de NH3, N2O y NO provenientes de suelos arables fertilizados con urea, mediante la ralentización de la hidrólisis de la urea y posterior liberación de menores concentraciones de NH4 + a la capa superior del suelo. El riego por goteo combinado con la aplicación dividida de fertilizante nitrogenado disuelto en el agua de riego (i.e. fertirriego por goteo) se considera normalmente una práctica eficiente para el uso del agua y de los nutrientes. Algunos de los principales factores (WFPS, NH4 + y NO3 -) que regulan las emisiones de GHGs (i.e. N2O, CO2 y CH4) y NO pueden ser fácilmente manipulados por medio del fertirriego por goteo sin que se generen disminuciones del rendimiento. Con ese propósito se evaluaron opciones de manejo para reducir estas emisiones en un experimento de campo durante un cultivo de melón (Cucumis melo L.). Los tratamientos incluyeron distintas frecuencias de riego (semanal/diario) y tipos de fertilizantes nitrogenados (urea/nitrato cálcico) aplicados por fertirriego. Fertirrigar con urea en lugar de nitrato cálcico aumentó las emisiones de N2O y NO por un factor de 2.4 y 2.9, respectivamente (P < 0.005). El riego diario redujo las emisiones de NO un 42% (P < 0.005) pero aumentó las emisiones de CO2 un 21% (P < 0.05) comparado con el riego semanal. Analizando el Poder de Calentamiento global en base al rendimiento así como los factores de emisión del NO, concluimos que el fertirriego semanal con un fertilizante de tipo nítrico es la mejor opción para combinar productividad agronómica con sostenibilidad medioambiental en este tipo de agroecosistemas. Los suelos agrícolas en las áreas semiáridas Mediterráneas se caracterizan por su bajo contenido en materia orgánica y bajos niveles de fertilidad. La aplicación de residuos de cosecha y/o abonos es una alternativa sostenible y eficiente desde el punto de vista económico para superar este problema. Sin embargo, estas prácticas podrían inducir cambios importantes en las emisiones de N2O de estos agroecosistemas, con impactos adicionales en las emisiones de CO2. En este contexto se llevó a cabo un experimento de campo durante un cultivo de cebada (Hordeum vulgare L.) bajo condiciones Mediterráneas para evaluar el efecto de combinar residuos de cosecha de maíz con distintos inputs de fertilizantes nitrogenados (purín de cerdo y/o urea) en estas emisiones. La incorporación de rastrojo de maíz incrementó las emisiones de N2O durante el periodo experimental un 105%. Sin embargo, las emisiones de NO se redujeron significativamente en las parcelas enmendadas con rastrojo. La sustitución parcial de urea por purín de cerdo redujo las emisiones netas de N2O un 46 y 39%, con y sin incorporación de residuo de cosecha respectivamente. Las emisiones netas de NO se redujeron un 38 y un 17% para estos mismos tratamientos. El ratio molar DOC:NO3 - demostró predecir consistentemente las emisiones de N2O y NO. El efecto principal de la interacción entre el fertilizante nitrogenado y el rastrojo de maíz se dio a los 4-6 meses de su aplicación, generando un aumento del N2O y una disminución del NO. La sustitución de urea por purín de cerdo puede considerarse una buena estrategia de manejo dado que el uso de este residuo orgánico redujo las emisiones de óxidos de N. Los pastos de todo el mundo proveen numerosos servicios ecosistémicos pero también suponen una importante fuente de emisión de N2O, especialmente en respuesta a la deposición de N proveniente del ganado mientras pasta. Para explorar el papel de las plantas como mediadoras de estas emisiones, se analizó si las emisiones de N2O dependen de la riqueza en especies herbáceas y/o de la composición específica de especies, en ausencia y presencia de una deposición de orina. Las hipótesis fueron: 1) las emisiones de N2O tienen una relación negativa con la productividad de las plantas; 2) mezclas de cuatro especies generan menores emisiones que monocultivos (dado que su productividad será mayor); 3) las emisiones son menores en combinaciones de especies con distinta morfología radicular y alta biomasa de raíz; y 4) la identidad de las especies clave para reducir el N2O depende de si hay orina o no. Se establecieron monocultivos y mezclas de dos y cuatro especies comunes en pastos con rasgos funcionales divergentes: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) y Poa trivialis L. (Pt), y se cuantificaron las emisiones de N2O durante 42 días. No se encontró relación entre la riqueza en especies y las emisiones de N2O. Sin embargo, estas emisiones fueron significativamente menores en ciertas combinaciones de especies. En ausencia de orina, las comunidades de plantas Fa+Php actuaron como un sumidero de N2O, mientras que los monocultivos de estas especies constituyeron una fuente de N2O. Con aplicación de orina la comunidad Lp+Pt redujo (P < 0.001) las emisiones de N2O un 44% comparado con los monocultivos de Lp. Las reducciones de N2O encontradas en ciertas combinaciones de especies pudieron explicarse por una productividad total mayor y por una complementariedad en la morfología radicular. Este estudio muestra que la composición de especies herbáceas es un componente clave que define las emisiones de N2O de los ecosistemas de pasto. La selección de combinaciones de plantas específicas en base a la deposición de N esperada puede, por lo tanto, ser clave para la mitigación de las emisiones de N2O. ABSTRACT Nitrous oxide (N2O) is a potent greenhouse gas (GHG) directly linked to applications of nitrogen (N) fertilizers to agricultural soils. Identifying mitigation strategies for these emissions based on fertilizer management without incurring in yield penalties is of economic and environmental concern. With that aim, this Thesis evaluated: (i) the use of nitrification and urease inhibitors; and (ii) interactions of N fertilizers with (1) water management, (2) crop residues and (3) plant species richness/identity. Meta-analysis, laboratory incubations, greenhouse mesocosm and field experiments were carried out in order to understand and develop effective mitigation strategies. Nitrification and urease inhibitors are proposed as means to reduce N losses, thereby increasing crop nitrogen use efficiency (NUE). However, their effect on crop yield is variable. A meta-analysis was initially conducted to evaluate their effectiveness at increasing NUE and crop productivity. Commonly used nitrification inhibitors (dicyandiamide (DCD) and 3,4-dimethylepyrazole phosphate (DMPP)) and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) were selected for analysis as they are generally considered the best available options. Our results show that their use can be recommended in order to increase both crop yields and NUE (grand mean increase of 7.5% and 12.9%, respectively). However, their effectiveness was dependent on the environmental and management factors of the studies evaluated. Larger responses were found in coarse-textured soils, irrigated systems and/or crops receiving high nitrogen fertilizer rates. In alkaline soils (pH ≥ 8), the urease inhibitor NBPT produced the largest effect size. Given that their use represents an additional cost for farmers, understanding the best management practices to maximize their effectiveness is paramount to allow effective comparison with other practices that increase crop productivity and NUE. Based on the meta-analysis results, NBPT was identified as a mitigation option with large potential. Urease inhibitors (UIs) have shown to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, however, some field researches have shown an effective mitigation of UIs over N2O losses from fertilized soils under conditions of low soil moisture. Given the inherent high variability of field experiments where soil moisture content changes rapidly, it has been impossible to mechanistically understand the potential of UIs to reduce N2O emissions and its dependency on the soil water-filled pore space (WFPS). An incubation experiment was carried out aiming to assess what is the main biotic mechanism behind N2O emission when UIs are applied under different soil moisture conditions (40, 60 and 80% WFPS), and to analyze to what extent the soil WFPS regulates the effect of the inhibitor over N2O emissions. A second UI (i.e. PPDA) was also used aiming to compare the effect of NBPT with that of another commercially available urease inhibitor; this allowed us to see if the effect of NBPT was inhibitor-specific or not. The N2O emissions at 40% WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80% WFPS. Compared to urea alone, NBPT+U reduced the N2O emissions at 60% WFPS but had no effect at 80% WFPS. The application of PPDA significantly increased the emissions with respect to U at 80% WFPS whereas no significant effect was found at 60% WFPS. At 80% WFPS denitrification was the main source of N2O emissions for all treatments. Both nitrification and denitrification had a determinant role on these emissions at 60% WFPS. These results suggest that adequate management of the UI NBPT can provide, under certain soil conditions, an opportunity for N2O mitigation. We translated our previous results to realistic field conditions by means of a field experiment with a barley crop (Hordeum vulgare L.) under rainfed Mediterranean conditions in which we evaluated the effectiveness of NBPT to reduce N losses and increase crop yields. Crop yield, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification potential, NH3, N2O and nitric oxide (NO) fluxes were measured during the growing season. The inclusion of the inhibitor reduced NH3 emissions in the 30 d following urea application by 58% and net N2O and NO emissions in the 95 d following urea application by 86 and 88%, respectively. NBPT addition also increased grain yield by 5% and N uptake by 6%, although neither increase was statistically significant. Under the experimental conditions presented here, these results demonstrate the potential of the urease inhibitor NBPT in abating NH3, N2O and NO emissions from arable soils fertilized with urea, slowing urea hydrolysis and releasing lower concentrations of NH4 + to the upper soil layer. Drip irrigation combined with split application of N fertilizer dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. Some of the main factors (WFPS, NH4 + and NO3 -) regulating the emissions of GHGs (i.e. N2O, carbon dioxide (CO2) and methane (CH4)) and NO can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations, N2O, NO, CH4, and CO2 fluxes were measured during the growing season. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. Based on yield-scaled Global Warming Potential as well as NO emission factors, we conclude that weekly fertigation with a NO3 --based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Agricultural soils in semiarid Mediterranean areas are characterized by low organic matter contents and low fertility levels. Application of crop residues and/or manures as amendments is a cost-effective and sustainable alternative to overcome this problem. However, these management practices may induce important changes in the nitrogen oxide emissions from these agroecosystems, with additional impacts on CO2 emissions. In this context, a field experiment was carried out with a barley (Hordeum vulgare L.) crop under Mediterranean conditions to evaluate the effect of combining maize (Zea mays L.) residues and N fertilizer inputs (organic and/or mineral) on these emissions. Crop yield and N uptake, soil mineral N concentrations, dissolved organic carbon (DOC), denitrification capacity, N2O, NO and CO2 fluxes were measured during the growing season. The incorporation of maize stover increased N2O emissions during the experimental period by c. 105 %. Conversely, NO emissions were significantly reduced in the plots amended with crop residues. The partial substitution of urea by pig slurry reduced net N2O emissions by 46 and 39 %, with and without the incorporation of crop residues respectively. Net emissions of NO were reduced 38 and 17 % for the same treatments. Molar DOC:NO3 - ratio was found to be a robust predictor of N2O and NO fluxes. The main effect of the interaction between crop residue and N fertilizer application occurred in the medium term (4-6 month after application), enhancing N2O emissions and decreasing NO emissions as consequence of residue incorporation. The substitution of urea by pig slurry can be considered a good management strategy since N2O and NO emissions were reduced by the use of the organic residue. Grassland ecosystems worldwide provide many important ecosystem services but they also function as a major source of N2O, especially in response to N deposition by grazing animals. In order to explore the role of plants as mediators of these emissions, we tested whether and how N2O emissions are dependent on grass species richness and/or specific grass species composition in the absence and presence of urine deposition. We hypothesized that: 1) N2O emissions relate negatively to plant productivity; 2) four-species mixtures have lower emissions than monocultures (as they are expected to be more productive); 3) emissions are lowest in combinations of species with diverging root morphology and high root biomass; and 4) the identity of the key species that reduce N2O emissions is dependent on urine deposition. We established monocultures and two- and four-species mixtures of common grass species with diverging functional traits: Lolium perenne L. (Lp), Festuca arundinacea Schreb. (Fa), Phleum pratense L. (Php) and Poa trivialis L. (Pt), and quantified N2O emissions for 42 days. We found no relation between plant species richness and N2O emissions. However, N2O emissions were significantly reduced in specific plant species combinations. In the absence of urine, plant communities of Fa+Php acted as a sink for N2O, whereas the monocultures of these species constituted a N2O source. With urine application Lp+Pt plant communities reduced (P < 0.001) N2O emissions by 44% compared to monocultures of Lp. Reductions in N2O emissions by species mixtures could be explained by total biomass productivity and by complementarity in root morphology. Our study shows that plant species composition is a key component underlying N2O emissions from grassland ecosystems. Selection of specific grass species combinations in the context of the expected nitrogen deposition regimes may therefore provide a key management practice for mitigation of N2O emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is the main greenhouse gas (GHG) produced by agricultural soils due to microbial processes. The application of N fertilizers is associated with an increase of N2O losses. However, it is possible to mitigate these emissions by the introduction of adequate management practices (Snyder et al., 2009). Soil conservation practices (i.e.no tillage, NT) have recently become widespread because they promote several positive effects (increases in soil organic carbonand soil fertility, reduction of soil erosion, etc). In terms of GHG emissions, there is no consensus in the literature on the effects of tillage on N2O. Several studies found that NT can produce greater (Baggs et al., 2003), lower (Malhi et al., 2006) or similar (Grandey et al., 2006) N2O emissions compared to traditional tillage (TT). This large uncertainty is associated with the duration of tillage practices and climatic variability. Liming is widely use to solve problems of soil acidity (Al toxicity, yield penalties, etc). Several studies show a decrease in N2O emissions with liming (Barton et al., 2013) whereas no significant effects or increases were observed in others (Galbally et al., 2010). The aim of this work was to evaluate the effects of tillage (NT vs TT) and liming application or not of Ca-amendment) on N2O emissions from an acid soil during a rainfed crop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNDC (DeNitrification and DeComposition) model was first developed by Li et al. (1992) as a rain event-driven process-orientated simulation model for nitrous oxide, carbon dioxide and nitrogen gas emissions from the agricultural soils in the U.S. Over the last 20 years, the model has been modified and adapted by various research groups around the world to suit specific purposes and circumstances. The Global Research Alliance Modelling Platform (GRAMP) is a UK-led initiative for the establishment of a purposeful and credible web-based platform initially aimed at users of the DNDC model. With the aim of improving the predictions of soil C and N cycling in the context of climate change the objectives of GRAMP are to: 1) to document the existing versions of the DNDC model; 2) to create a family tree of the individual DNDC versions; 3) to provide information on model use and development; and 4) to identify strengths, weaknesses and potential improvements for the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micrometeorological mass-balance integrated horizontal flux (IHF) technique has been commonly employed for measuring ammonia (NH3) emissions inon-field experiments. However, the inverse-dispersion modeling technique, such as the backward Lagrangian stochastic (bLS) modeling approach, is currently highlighted as offering flexibility in plot design and requiring a minimum number of samplers (Ro et al., 2013). The objective of this study was to make a comparison between the bLS technique with the IHF technique for estimating NH3 emission from flexible bag storage and following landspreading of dairy cattle slurry. Moreover, considering that NH3 emission in storage could have been non uniform, the effect on bLS estimates of a single point and multiple downwind concentration measurements was tested, as proposed by Sanz et al. (2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation of large volumes of dilute slurries is considered one of the major problems related to intensive farming (Sommer et al., 2004). In the EU-27, more than half of the total N excretion is applied to croplands due to technical advantages for farmers (e.g. reuse of nutrients). However, the N use efficiency of slurries produced by livestock is low, i.e. only 20-52% of the excreted N is recovered by crops. Much of the remainder can be lost into the atmosphere as ammonia (NH3), nitrous oxide (N2O), dinitrogen (N2) and nitrogen oxides (NOx).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adjusting N fertilizer application to crop requirements is a key issue to improve fertilizer efficiency, reducing unnecessary input costs to farmers and N environmental impact. Among the multiple soil and crop tests developed, optical sensors that detect crop N nutritional status may have a large potential to adjust N fertilizer recommendation (Samborski et al. 2009). Optical readings are rapid to take and non-destructive, they can be efficiently processed and combined to obtain indexes or indicators of crop status. However, other physiological stress conditions may interfere with the readings and detection of the best crop nutritional status indicators is not always and easy task. Comparison of different equipments and technologies might help to identify strengths and weakness of the application of optical sensors for N fertilizer recommendation. The aim of this study was to evaluate the potential of various ground-level optical sensors and narrow-band indices obtained from airborne hyperspectral images as tools for maize N fertilizer recommendations. Specific objectives were i) to determine which indices could detect differences in maize plants treated with different N fertilizer rates, and ii) to evaluate its ability to identify N-responsive from non-responsive sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CENTURY soil organic matter model was adapted for the DSSAT (Decision Support System for Agrotechnology Transfer), modular format in order to better simulate the dynamics of soil organic nutrient processes (Gijsman et al., 2002). The CENTURY model divides the soil organic carbon (SOC) into three hypothetical pools: microbial or active material (SOC1), intermediate (SOC2) and the largely inert and stable material (SOC3) (Jones et al., 2003). At the beginning of the simulation, CENTURY model needs a value of SOC3 per soil layer which can be estimated by the model (based on soil texture and management history) or given as an input. Then, the model assigns about 5% and 95% of the remaining SOC to SOC1 and SOC2, respectively. The model performance when simulating SOC and nitrogen (N) dynamics strongly depends on the initialization process. The common methods (e.g. Basso et al., 2011) to initialize SOC pools deal mostly with carbon (C) mineralization processes and less with N. Dynamics of SOM, SOC, and soil organic N are linked in the CENTURY-DSSAT model through the C/N ratio of decomposing material that determines either mineralization or immobilization of N (Gijsman et al., 2002). The aim of this study was to evaluate an alternative method to initialize the SOC pools in the DSSAT-CENTURY model from apparent soil N mineralization (Napmin) field measurements by using automatic inverse calibration (simulated annealing). The results were compared with the ones obtained by the iterative initialization procedure developed by Basso et al., 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha?1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha?1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper management of the N applied to crops is necessary in order to increase yield, improve water use efficiency (WUE) and reduce the pollutions risks with the least economic, environmental and health costs. A field study with melon crops was conducted during 2005, 2006 and 2007 in central Spain, using 11 different amounts of N. Some environmental indexes have been proposed, to provide an essential tool for determining the groundwater pollution risks associated with common agricultural practices. These indexes are related to variation in the nitrate concentration of drinking water (Impact Index (II)) and groundwater (Environmental Impact Index (EII)). Also, the Management Efficiency (ME) was calculated, which is related to the amount of fruit produced per gram of N leached (Nl). To determine the optimum dose of N, it was also necessary to know the N mineralisation (NM). Our results show that 160 kg ha−1 of available N (Nav) produced the maximum fruit yield (FY), enhanced WUE and gave an NM of 85 kg ha−1, while the impact indexes did not exceed the fixed maximum allowable limits and ME was adequate. The proposed indexes proved to be an effective tool for determining the risk of nitrate contamination and confirmed that the optimum dose of N corresponded to the maximum FY with minimal loss of Nl.