1 resultado para Pessoal da área médica - Salários
em Universidad Politécnica de Madrid
Resumo:
Hoy día, en la era post genómica, los ensayos clínicos de cáncer implican la colaboración de diversas instituciones. El análisis multicéntrico y retrospectivo requiere de métodos avanzados para garantizar la interoperabilidad semántica. En este escenario, el objetivo de los proyectos EURECA e INTEGRATE es proporcionar una infraestructura para compartir conocimientos y datos de los ensayos clínicos post genómicos de cáncer. Debido en gran parte a la gran complejidad de los procesos colaborativos de las instituciones, provoca que la gestión de una información tan heterogénea sea un desafío dentro del área médica. Las tecnologías semánticas y las investigaciones relacionadas están centradas en búsqueda de conocimiento de la información extraída, permitiendo una mayor flexibilidad y usabilidad de los datos extraidos. Debido a la falta de estándares adoptados por estas entidades y la complejidad de los datos procedentes de ensayos clínicos, una capacidad semántica es esencial para asegurar la integración homogénea de esta información. De otra manera, los usuarios finales necesitarán conocer cada modelo y cada formato de dato de las instituciones participantes en cada estudio. Para proveer de una capa de interoperabilidad semántica, el primer paso es proponer un\Common Data Model" (CDM) que represente la información a almacenar, y un \Core Dataset" que permita el uso de múltiples terminologías como vocabulario compartido. Una vez que el \Core Dataset" y el CDM han sido seleccionados, la manera en la que realizar el mapping para unir los conceptos de una terminología dada al CDM, requiere de una mecanismo especial para realizar dicha labor. Dicho mecanismo, debe definir que conceptos de diferentes vocabularios pueden ser almacenados en determinados campos del modelo de datos, con la finalidad de crear una representación común de la información. El presente proyecto fin de grado, presenta el desarrollo de un servicio que implementa dicho mecanismo para vincular elementos de las terminologías médicas SNOMED CT, LOINC y HGNC, con objetos del \Health Level 7 Reference Information Model" (HL7 RIM). El servicio propuesto, y nombrado como TermBinding, sigue las recomendaciones del proyecto TermInfo del grupo HL7, pero también se tienen en cuenta cuestiones importantes que surgen al enlazar entre las citadas terminologas y el modelo de datos planteado. En este proceso de desarrollo de la interoperabilidad semántica en ensayos clínicos de cáncer, los datos de fuentes heterogéneas tienen que ser integrados, y es requisito que se deba habilitar una interfaz de acceso homogéneo a toda esta información. Para poder hacer unificar los datos provenientes de diferentes aplicaciones y bases de datos, es esencial representar todos estos datos de una manera canónica o normalizada. La estandarización de un determinado concepto de SNOMED CT, simplifica las recomendaciones del proyecto TermInfo del grupo HL7, utilizadas para poder almacenar cada concepto en el modelo de datos. Siguiendo este enfoque, la interoperabilidad semántica es conseguida con éxito para conceptos SNOMED CT, sean o no post o pre coordinados, así como para las terminologías LOINC y HGNC. Los conceptos son estandarizados en una forma normal que puede ser usada para unir los datos al \Common Data Model" basado en el RIM de HL7. Aunque existen limitaciones debido a la gran heterogeneidad de los datos a integrar, un primer prototipo del servicio propuesto se está utilizando con éxito en el contexto de los proyectos EURECA e INTEGRATE. Una mejora en la interoperabilidad semántica de los datos de ensayos clínicos de cáncer tiene como objetivo mejorar las prácticas en oncología.