2 resultados para Personalisation

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient Intelligence could support innovative application domains like motor impairments' detection at the home environment. This research aims to prevent neurodevelopmental disorders through the natural interaction of the children with embedded intelligence daily life objects, like home furniture and toys. Designed system uses an interoperable platform to provide two intelligent interrelated home healthcare services: monitoring of children¿s abilities and completion of early stimulation activities. A set of sensors, which are embedded within the rooms, toys and furniture, allows private data gathering about the child's interaction with the environment. This information feeds a reasoning subsystem, which encloses an ontology of neurodevelopment items, and adapts the service to the age and acquisition of expected abilities. Next, the platform proposes customized stimulation services by taking advantage of the existing facilities at the child's environment. The result integrates Embedded Sensor Systems for Health at Mälardalen University with UPM Smart Home, for adapted services delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mobile activity recognition focuses on inferring the current activities of a mobile user by leveraging the sensory data that is available on today’s smart phones. The state of the art in mobile activity recognition uses traditional classification learning techniques. Thus, the learning process typically involves: i) collection of labelled sensory data that is transferred and collated in a centralised repository; ii) model building where the classification model is trained and tested using the collected data; iii) a model deployment stage where the learnt model is deployed on-board a mobile device for identifying activities based on new sensory data. In this paper, we demonstrate the Mobile Activity Recognition System (MARS) where for the first time the model is built and continuously updated on-board the mobile device itself using data stream mining. The advantages of the on-board approach are that it allows model personalisation and increased privacy as the data is not sent to any external site. Furthermore, when the user or its activity profile changes MARS enables promptly adaptation. MARS has been implemented on the Android platform to demonstrate that it can achieve accurate mobile activity recognition. Moreover, we can show in practise that MARS quickly adapts to user profile changes while at the same time being scalable and efficient in terms of consumption of the device resources.