6 resultados para Person Re-Identification

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tesis trata sobre métodos de corrección que compensan la variación de las condiciones de iluminación en aplicaciones de imagen y video a color. Estas variaciones hacen que a menudo fallen aquellos algoritmos de visión artificial que utilizan características de color para describir los objetos. Se formulan tres preguntas de investigación que definen el marco de trabajo de esta tesis. La primera cuestión aborda las similitudes que se dan entre las imágenes de superficies adyacentes en relación a su comportamiento fotométrico. En base al análisis del modelo de formación de imágenes en situaciones dinámicas, esta tesis propone un modelo capaz de predecir las variaciones de color de la región de una determinada imagen a partir de las variaciones de las regiones colindantes. Dicho modelo se denomina Quotient Relational Model of Regions. Este modelo es válido cuando: las fuentes de luz iluminan todas las superficies incluídas en él; estas superficies están próximas entre sí y tienen orientaciones similares; y cuando son en su mayoría lambertianas. Bajo ciertas circunstancias, la respuesta fotométrica de una región se puede relacionar con el resto mediante una combinación lineal. No se ha podido encontrar en la literatura científica ningún trabajo previo que proponga este tipo de modelo relacional. La segunda cuestión va un paso más allá y se pregunta si estas similitudes se pueden utilizar para corregir variaciones fotométricas desconocidas en una región también desconocida, a partir de regiones conocidas adyacentes. Para ello, se propone un método llamado Linear Correction Mapping capaz de dar una respuesta afirmativa a esta cuestión bajo las circunstancias caracterizadas previamente. Para calcular los parámetros del modelo se requiere una etapa de entrenamiento previo. El método, que inicialmente funciona para una sola cámara, se amplía para funcionar en arquitecturas con varias cámaras sin solape entre sus campos visuales. Para ello, tan solo se necesitan varias muestras de imágenes del mismo objeto capturadas por todas las cámaras. Además, este método tiene en cuenta tanto las variaciones de iluminación, como los cambios en los parámetros de exposición de las cámaras. Todos los métodos de corrección de imagen fallan cuando la imagen del objeto que tiene que ser corregido está sobreexpuesta o cuando su relación señal a ruido es muy baja. Así, la tercera cuestión se refiere a si se puede establecer un proceso de control de la adquisición que permita obtener una exposición óptima cuando las condiciones de iluminación no están controladas. De este modo, se propone un método denominado Camera Exposure Control capaz de mantener una exposición adecuada siempre y cuando las variaciones de iluminación puedan recogerse dentro del margen dinámico de la cámara. Los métodos propuestos se evaluaron individualmente. La metodología llevada a cabo en los experimentos consistió en, primero, seleccionar algunos escenarios que cubrieran situaciones representativas donde los métodos fueran válidos teóricamente. El Linear Correction Mapping fue validado en tres aplicaciones de re-identificación de objetos (vehículos, caras y personas) que utilizaban como caracterísiticas la distribución de color de éstos. Por otra parte, el Camera Exposure Control se probó en un parking al aire libre. Además de esto, se definieron varios indicadores que permitieron comparar objetivamente los resultados de los métodos propuestos con otros métodos relevantes de corrección y auto exposición referidos en el estado del arte. Los resultados de la evaluación demostraron que los métodos propuestos mejoran los métodos comparados en la mayoría de las situaciones. Basándose en los resultados obtenidos, se puede decir que las respuestas a las preguntas de investigación planteadas son afirmativas, aunque en circunstancias limitadas. Esto quiere decir que, las hipótesis planteadas respecto a la predicción, la corrección basada en ésta y la auto exposición, son factibles en aquellas situaciones identificadas a lo largo de la tesis pero que, sin embargo, no se puede garantizar que se cumplan de manera general. Por otra parte, se señalan como trabajo de investigación futuro algunas cuestiones nuevas y retos científicos que aparecen a partir del trabajo presentado en esta tesis. ABSTRACT This thesis discusses the correction methods used to compensate the variation of lighting conditions in colour image and video applications. These variations are such that Computer Vision algorithms that use colour features to describe objects mostly fail. Three research questions are formulated that define the framework of the thesis. The first question addresses the similarities of the photometric behaviour between images of dissimilar adjacent surfaces. Based on the analysis of the image formation model in dynamic situations, this thesis proposes a model that predicts the colour variations of the region of an image from the variations of the surrounded regions. This proposed model is called the Quotient Relational Model of Regions. This model is valid when the light sources illuminate all of the surfaces included in the model; these surfaces are placed close each other, have similar orientations, and are primarily Lambertian. Under certain circumstances, a linear combination is established between the photometric responses of the regions. Previous work that proposed such a relational model was not found in the scientific literature. The second question examines whether those similarities could be used to correct the unknown photometric variations in an unknown region from the known adjacent regions. A method is proposed, called Linear Correction Mapping, which is capable of providing an affirmative answer under the circumstances previously characterised. A training stage is required to determine the parameters of the model. The method for single camera scenarios is extended to cover non-overlapping multi-camera architectures. To this extent, only several image samples of the same object acquired by all of the cameras are required. Furthermore, both the light variations and the changes in the camera exposure settings are covered by correction mapping. Every image correction method is unsuccessful when the image of the object to be corrected is overexposed or the signal-to-noise ratio is very low. Thus, the third question refers to the control of the acquisition process to obtain an optimal exposure in uncontrolled light conditions. A Camera Exposure Control method is proposed that is capable of holding a suitable exposure provided that the light variations can be collected within the dynamic range of the camera. Each one of the proposed methods was evaluated individually. The methodology of the experiments consisted of first selecting some scenarios that cover the representative situations for which the methods are theoretically valid. Linear Correction Mapping was validated using three object re-identification applications (vehicles, faces and persons) based on the object colour distributions. Camera Exposure Control was proved in an outdoor parking scenario. In addition, several performance indicators were defined to objectively compare the results with other relevant state of the art correction and auto-exposure methods. The results of the evaluation demonstrated that the proposed methods outperform the compared ones in the most situations. Based on the obtained results, the answers to the above-described research questions are affirmative in limited circumstances, that is, the hypothesis of the forecasting, the correction based on it, and the auto exposure are feasible in the situations identified in the thesis, although they cannot be guaranteed in general. Furthermore, the presented work raises new questions and scientific challenges, which are highlighted as future research work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many image processing methods, such as techniques for people re-identification, assume photometric constancy between different images. This study addresses the correction of photometric variations based upon changes in background areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different colours and will change over time. In training mode, the authors learn per-location relations between foreground and background colour intensities. In correction mode, the authors apply a double linear correction model based on learned relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the authors’ method outperforms these state-of-the-art algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe new results and improvements to a lan-guage identification (LID) system based on PPRLM previously introduced in [1] and [2]. In this case, we use as parallel phone recognizers the ones provided by the Brno University of Technology for Czech, Hungarian, and Russian lan-guages, and instead of using traditional n-gram language models we use a lan-guage model that is created using a ranking with the most frequent and discrim-inative n-grams. In this language model approach, the distance between the ranking for the input sentence and the ranking for each language is computed, based on the difference in relative positions for each n-gram. This approach is able to model reliably longer span information than in traditional language models obtaining more reliable estimations. We also describe the modifications that we have being introducing along the time to the original ranking technique, e.g., different discriminative formulas to establish the ranking, variations of the template size, the suppression of repeated consecutive phones, and a new clus-tering technique for the ranking scores. Results show that this technique pro-vides a 12.9% relative improvement over PPRLM. Finally, we also describe re-sults where the traditional PPRLM and our ranking technique are combined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the intensive use of mobile phones for diferent purposes, these devices usually contain condential information which must not be accessed by another person apart from the owner of the device. Furthermore, the new generation phones commonly incorporate an accelerometer which may be used to capture the acceleration signals produced as a result of owner s gait. Nowadays, gait identication in basis of acceleration signals is being considered as a new biometric technique which allows blocking the device when another person is carrying it. Although distance based approaches as Euclidean distance or dynamic time warping have been applied to solve this identication problem, they show di±culties when dealing with gaits at diferent speeds. For this reason, in this paper, a method to extract an average template from instances of the gait at diferent velocities is presented. This method has been tested with the gait signals of 34 subjects while walking at diferent motion speeds (slow, normal and fast) and it has shown to improve the performance of Euclidean distance and classical dynamic time warping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Quality of Life of a person may depend on early attention to his neurodevel-opment disorders in childhood. Identification of language disorders under the age of six years old can speed up required diagnosis and/or treatment processes. This paper details the enhancement of a Clinical Decision Support System (CDSS) aimed to assist pediatricians and language therapists at early identification and re-ferral of language disorders. The system helps to fine tune the Knowledge Base of Language Delays (KBLD) that was already developed and validated in clinical routine with 146 children. Medical experts supported the construction of Gades CDSS by getting scientific consensus from literature and fifteen years of regis-tered use cases of children with language disorders. The current research focuses on an innovative cooperative model that allows the evolution of the KBLD of Gades through the supervised evaluation of the CDSS learnings with experts¿ feedback. The deployment of the resulting system is being assessed under a mul-tidisciplinary team of seven experts from the fields of speech therapist, neonatol-ogy, pediatrics, and neurology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.