14 resultados para Permanent Deformation
em Universidad Politécnica de Madrid
Resumo:
Permanent displacements of a gas turbine founded on a fine, poorly graded, and medium density sand are studied. The amplitudes and modes of vibration are computed using Barkan´s formulation, and the “High-Cycle Accumulation” (HCA) model is employed to account for accumulated deformations due to the high number of cycles. The methodology is simple: it can be easily incorporated into standard mathematical software, and HCA model parameters can be estimated based on granulometry and index properties. Special attention is devoted to ‘transient’ situations at equipment´s start-up, during which a range of frequencies – including frequencies that could be similar to the natural frequencies of the ground – is traversed. Results show that such transient situations could be more restrictive than stationary situations corresponding to normal operation. Therefore, checking the stationary situation only might not be enough, and studying the influence of transient situations on computed permanent displacements is needed to produce a proper foundation design
Resumo:
Impact response in fruits, primarily appl.es and pears (Pomaceae fruits), has been studied during the last five years. Using a laboratory impact testing device and also free-fall tests of instrumented apples, a significant body of results has been established, relative to the parameters which best characterize the impact response of these materials, and to their correlation with bruise damage, variety and ripeness level of the fruits. Bruise damage, measured as the size and/or volume of the affected fruit tissue is related primarily to applied energy (i.e. mainly drop height) for a given variety at a given ripeness stage. The relevant impact response parameters are maximum deformation (DM), permanent deformation (DP), maximum impulse (IM), maximum impact force (FM), maximum value of the force/time slope during impact (F/T) and impact time (T). The effect of ripeness differences was also studied in selected varieties of pears, being the most relevant parameters: maximum force (FM) and F/T slope.
Resumo:
Actualmente y desde hace ya más de 25 años, el Método de “Predicción de las Direcciones Principales de Drenaje Subterráneo en Macizos Anisótropos”, ha sido utilizado con éxito en diferentes terrenos Kársticos como: calizas, yesos, cuarcitas, pizarras, granitos y criokarst (karst en el hielo glaciar). Sin embargo hasta ahora, nunca se había validado en terrenos volcánicos donde está focalizada esta tesis que lleva por título, Validación de dicho Método en los Terrenos Volcánicos del Macizo de Anaga en Tenerife. Este Método matemático consiste esencialmente en “Predecir y Cuantificar” las direcciones principales de drenaje turbulento subterráneo en macizos anisótropos. Para ello se basa en el estudio realizado en campo de los tectoglifos o deformaciones permanentes del macizo, impresas éstas en la roca, como consecuencia de los esfuerzos tectónicos a los que ha estado sometido dicho macizo. Se consigue de esta manera cubrir el vacío para macizos anisótropos que existe con el modelo matemático de flujo subterráneo laminar (macizos isótropos) definido por Darcy (1856). Para validar el Método se ha elegido el macizo de Anaga, pues es la zona de mayor anisotropía existente en la isla de Tenerife, conformada por una gran y extensa red de diques de diversas formas y tamaños que pertenecen a la familia de diques del eje estructural NE de la isla. En dicho macizo se realizó un exhaustivo trabajo de campo con la toma 331 datos (diques basálticos) y se aplicó el Método, consiguiendo definir las direcciones preferentes de drenaje subterráneo en el macizo de Anaga. Esta predicción obtenida se contrastó con la realidad del drenaje en la zona, conocida gracias a la existencia de cinco galerías ubicadas en la zona trabajo, de las cuales se tiene información sobre sus alumbramientos. En todos los casos se demuestra la bondad de la predicción obtenida con el Método. Queda demostrado que a mayor caos geológico o geotectónico, se ha conseguido mejor predicción del Método, obteniéndose resultados muy satisfactorios para aquellas galerías de agua en las que su rumbo de avance fue coincidente con la dirección perpendicular a la obtenida con la predicción dada por el Método, como dirección preferente de drenaje en la zona en la que se encuentra ubicada cada galería. No cabe duda que la validación de Método en los terrenos volcánicos de Tenerife, supondrá un cambio considerable en el mundo de la hidrogeología en este tipo de terrenos. Es la única herramienta matemática que se dispone para predecir un rumbo acertado en el avance de la perforación de las galerías de aguas, lo que conlleva al mismo tiempo un ahorro importantísimo en la ejecución de las obras. Por otro lado, el Método deja un importante legado a la sociedad canaria, pues con él se abren numerosas vías de trabajo e investigación que generarán un importante desarrollo en el mundo de la hidrogeología volcánica. ABSTRACT Currently and for over 25 years now, the Method of "Prediction of Subsurface Drainage Main Directions in Anisotropic Massifs" has been successfully used in various karstic terrains such as: limestone, gypsum, quartzite, slate, granite and criokarst (karst in the glacier ice). However, until now, it had never been validated in volcanic terrains where is focused this thesis entitled Validation of such Method in the Anaga Massif Volcanic Terrains, in Tenerife. This mathematical method is essentially "predict and quantify" the main directions of groundwater turbulent drainage in anisotropic massifs. This is based on field study of tectoglifes or permanent deformation of the massif, printed on the rocks as a result of previous tectonic stresses. Therefore it is possible to use in anisotropic rock mathematical model instead of the isotropic laminar flow mathematical models defined by Darcy (1856). The Anaga Massif have been chosen to validate the method, because it presents the greatest anisotropy in Tenerife Island, shaped by a large and extensive network of dikes of various shapes and sizes that belong to the family of NE structural axis dikes of the island. An exhaustive field work was carried out in such massif, with 331 collected data (basaltic dikes) and the method was applied, in order to define the preferred direction of the underground drainage in the Anaga massif. This obtained prediction was contrasted to the reality of the drainage in the area, known thanks to the existence of five galleries located in the work area, from which information about their springs was available. In all cases it was possible to demonstrate the fitness of the prediction obtained by the method. It had been demonstrated that a greater geological or geotectonic chaos enhances a better prediction of the method, that predicted very satisfactory results for those water galleries which directions were perpendicular to that predicted by the Method as a drainage preferential direction, for the zone where was located each gallery. No doubt that the validation of the use of the Method in the volcanic terrain of Tenerife, means a considerable change in the world of hydrogeology in this type of terrain. It is the only mathematical tool available to predict a successful drilling direction in advancing water galleries, what also leads to major savings in execution of the drilling works. Furthermore, the method leaves an important legacy to the Canary Islands society, because it opens many lines of work and research to generate a significant development in the world of volcanic hydrogeology.
Resumo:
En los últimos años, debido a la creciente preocupación por el calentamiento global y el cambio climático, uno de los retos más importantes a los que se enfrenta nuestra sociedad es el uso eficiente y económico de energía así como la necesidad correspondiente de reducir los gases de efecto invernadero (GEI). Las tecnologías de mezclas semicalientes se han convertido en un nuevo e importante tema de investigación en el campo de los materiales para pavimentos ya que ofrece una solución potencial para la reducción del consumo energético y las emisiones de GEI durante la producción y puesta en obra de las mezclas bituminosas. Por otro lado, los pavimentos que contienen polvo de caucho procedente de neumático fuera de uso, al hacer uso productos de desecho, ahorran energía y recursos naturales. Estos pavimentos ofrecen una resistencia mejorada a la formación de roderas, a la fatiga y a la fisuración térmica, reducen los costes de mantenimiento y el ruido del tráfico así como prolongan la vida útil del pavimento. Sin embargo, estas mezclas presentan un importante inconveniente: la temperatura de fabricación se debe aumentar en comparación con las mezclas asfálticas convencionales, ya que la incorporación de caucho aumenta la viscosidad del ligante y, por lo tanto, se producen mayores cantidades de emisiones de GEI. En la presente Tesis, la tecnología de mezclas semicalientes con aditivos orgánicos (Sasobit, Asphaltan A, Asphaltan B, Licomont) se incorporó a la de betunes de alta viscosidad modificados con caucho (15% y 20% de caucho) con la finalidad de dar una solución a los inconvenientes de mezclas con caucho gracias a la utilización de aditivos reductores de la viscosidad. Para este fin, se estudió si sería posible obtener una producción más sostenible de mezclas con betunes de alto contenido en caucho sin afectar significativamente su nivel de rendimiento mecánico. La metodología aplicada para evaluar y comparar las características de las mezclas consistió en la realización de una serie de ensayos de laboratorio para betunes y mezclas con caucho y con aditivos de mezclas semicalientes y de un análisis del ciclo de vida híbrido de la producción de mezclas semicalientes teniendo en cuenta la papel del aditivo en la cadena de suministro con el fin de cuantificar con precisión los beneficios de esta tecnología. Los resultados del estudio indicaron que la incorporación de los aditivos permite reducir la viscosidad de los ligantes y, en consecuencia, las temperaturas de producción y de compactación de las mezclas. Por otro lado, aunque la adición de caucho mejoró significativamente el comportamiento mecánico de los ligantes a baja temperatura reduciendo la susceptibilidad al fenómeno de fisuración térmica, la adición de las ceras aumentó ligeramente la rigidez. Los resultados del estudio reológico mostraron que la adición de porcentajes crecientes de caucho mejoraban la resistencia del pavimento con respecto a la resistencia a la deformación permanente a altas temperaturas y a la fisuración térmica a bajas temperaturas. Además, se observó que los aditivos mejoran la resistencia a roderas y la elasticidad del pavimento al aumentar el módulo complejo a altas temperaturas y al disminuir del ángulo de fase. Por otra parte, el estudio reológico confirmó que los aditivos estudiados aumentan ligeramente la rigidez a bajas temperaturas. Los ensayos de fluencia llevados a cabo con el reómetro demostraron una vez más la mejora en la elasticidad y en la resistencia a la deformación permanente dada por la adición de las ceras. El estudio de mezclas con caucho y aditivos de mezclas semicalientes llevado a cabo demostró que las temperaturas de producción/compactación se pueden disminuir, que las mezclas no experimentarían escurrimiento, que los aditivos no cambian significativamente la resistencia conservada y que cumplen la sensibilidad al agua exigida. Además, los aditivos aumentaron el módulo de rigidez en algunos casos y mejoraron significativamente la resistencia a la deformación permanente. Asimismo, a excepción de uno de los aditivos, las mezclas con ceras tenían la misma o mayor resistencia a la fatiga en comparación con la mezcla control. Los resultados del análisis de ciclo de vida híbrido mostraron que la tecnología de mezclas semicalientes es capaz de ahorrar significativamente energía y reducir las emisiones de GEI, hasta un 18% y 20% respectivamente, en comparación con las mezclas de control. Sin embargo, en algunos de los casos estudiados, debido a la presencia de la cera, la temperatura de fabricación debe reducirse en un promedio de 8 ºC antes de que los beneficios de la reducción de emisiones y el consumo de combustible puedan ser obtenidos. Los principales sectores contribuyentes a los impactos ambientales generados en la fabricación de mezclas semicalientes fueron el sector de los combustibles, el de la minería y el de la construcción. Due to growing concerns over global warming and climate change in recent years, one of the most important challenges facing our society is the efficient and economic use of energy, and with it, the corresponding need to reduce greenhouse gas (GHG) emissions. The Warm Mix Asphalt (WMA) technology has become an important new research topic in the field of pavement materials as it offers a potential solution for the reduction of energy consumption and GHG emissions during the production and placement of asphalt mixtures. On the other hand, pavements containing crumb-rubber modified (CRM) binders save energy and natural resources by making use of waste products. These pavements offer an improved resistance to rutting, fatigue and thermal cracking; reduce traffic noise and maintenance costs and prolong pavement life. These mixtures, however, present one major drawback: the manufacturing temperature is higher compared to conventional asphalt mixtures as the rubber lends greater viscosity to the binder and, therefore, larger amounts of GHG emissions are produced. In this dissertation the WMA technology with organic additives (Sasobit, Asphaltan A, Asphaltan B and Licomont) was applied to CRM binders (15% and 20% of rubber) in order to offer a solution to the drawbacks of asphalt rubber (AR) mixtures thanks to the use of fluidifying additives. For this purpose, this study sought to determine if a more sustainable production of AR mixtures could be obtained without significantly affecting their level of mechanical performance. The methodology applied in order to evaluate and compare the performance of the mixtures consisted of carrying out several laboratory tests for the CRM binders and AR mixtures with WMA additives (AR-WMA mixtures) and a hybrid input-output-based life cycle assessment (hLCA) of the production of WMA. The results of the study indicated that the incorporation of the organic additives were able to reduce the viscosity of the binders and, consequently, the production and compaction temperatures. On the other hand, although the addition of rubber significantly improved the mechanical behaviour of the binders at low temperatures reducing the susceptibility to thermal cracking phenomena, the addition of the waxes slightly increased the stiffness. Master curves showed that the addition of increasing percentages of rubber improved the resistance of the pavement regarding both resistance to permanent deformation at high temperatures and thermal cracking at low temperatures. In addition, the waxes improved the rutting resistance and the elasticity as they increased the complex modulus at high temperatures and decreased the phase angle. Moreover, master curves also attest that the WMA additives studied increase the stiffness at low temperatures. The creep tests carried out proved once again the improvement in the elasticity and in the resistance to permanent deformation given by the addition of the waxes. The AR-WMA mixtures studied have shown that the production/compaction temperatures can be decreased, that the mixtures would not experience binder drainage, that the additives did not significantly change the retained resistance and fulfilled the water sensitivity required. Furthermore, the additives increased the stiffness modulus in some cases and significantly improved the permanent deformation resistance. Except for one of the additives, the waxes had the same or higher fatigue resistance compared to the control mixture. The results of the hLCA demonstrated that the WMA technology is able to significantly save energy and reduce GHG emissions, up to 18% and 20%, respectively, compared to the control mixtures. However, in some of the case studies, due to the presence of wax, the manufacturing temperature at the asphalt plant must be reduced by an average of 8ºC before the benefits of reduced emissions and fuel usage can be obtained. The results regarding the overall impacts generated using a detailed production layer decomposition indicated that fuel, mining and construction sectors are the main contributors to the environmental impacts of manufacturing WMA mixtures.
Resumo:
The microstructural evolution of an AZ31 rolled sheet during dynamic deformation at strain rates of ∼103 s−1 has been investigated by electron backscatter diffraction, X-ray and neutron diffraction. The influence of orientation on the predominant deformation mechanisms and on the recovery processes taking place during deformation has been systematically examined. The results have been compared with those corresponding to the same alloy tested quasi-statically under equivalent conditions. It has been found that strain rate enhances the activation of extension twinning dramatically, while contraction and secondary twinning are not significantly influenced. The polarity of extension twinning is even reversed in some grains under selected testing conditions. Significant grain subdivision by the formation of geometrically necessary boundaries (GNBs) takes place during both quasi-static and dynamic deformation of this AZ31 alloy. It is remarkable that GNBs of high misorientations form even at the highest strain rates. The phenomenon of recovery has been found to be orientation dependent
Resumo:
This work presents results for the three-dimensional displacement field at Tenerife Island calculated from campaign GPS and ascending and descending ENVISAT DInSAR interferograms. The goal of this work is to provide an example of the flexibility of the technique by fusing together new varieties of geodetic data, and to observe surface deformations and study precursors of potential activity in volcanic regions. Interferometric processing of ENVISAT data was performed with GAMMA software. All possible combinations were used to create interferograms and then stacking was used to increase signal-to-noise ratio. Decorrelated areas were widely observed, particularly for interferograms with large perpendicular baseline and large time span. Tropospheric signal was also observed which significantly complicated the interpretation. Subsidence signal was observed in the NW part of the island and around Mount Teide and agreed in some regions with campaign GPS data. It is expected that the technique will provide better results when more high quality DInSAR and GPS data is available
Resumo:
Desarrollo de algoritmo de interpolación basado en descomposición octree y funciones radiales de soporte compacto para movimiento de mallas en problemas aerolásticos
Resumo:
The failure locus, the characteristics of the stress–strain curve and the damage localization patterns were analyzed in a polypropylene nonwoven fabric under in-plane biaxial deformation. The analysis was carried out by means of a homogenization model developed within the context of the finite element method. It provides the constitutive response for a mesodomain of the fabric corresponding to the area associated to a finite element and takes into account the main deformation and damage mechanisms experimentally observed. It was found that the failure locus in the stress space was accurately predicted by the Von Mises criterion and failure took place by the localization of damage into a crack perpendicular to the main loading axis.
Resumo:
Nowadays CPV trends mostly based in lens parqueted flat modules, enable the separate design of the sun tracker. To enable this possibility a set of specifications is to be prescribed for the tracker design team, which take into account fundamental requisites such as the maximum service loads both permanent and variable, the sun tracking accuracy and the tracker structural stiffness required to maintain the CPV array acceptance angle loss below a certain threshold. In its first part this paper outlines the author’s approach to confront these issues. Next, a method is introduced to estimate the acceptance angle losses due to the tracker’s structural flexure, which in last instance relies in the computation of the minimum enclosing circle of a set of points in the plane. This method is also useful to simulate the drifts in the tracker’s pointing vector due to structural deformation as a function of the aperture orientation angle. Results of this method when applied to the design of a two axis CPV pedestal tracker are presented.
Resumo:
The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.
Resumo:
Nanofibrillar Al2O3–Y3Al5O12–ZrO2 eutectic rods were manufactured by directional solidification from the melt at high growth rates in an inert atmosphere using the laser-heated floating zone method. Under conditions of cooperative growth, the ternary eutectic presented a homogeneous microstructure, formed by bundles of single-crystal c-oriented Al2O3 and Y3Al5O12 (YAG) whiskers of ≈100 nm in width with smaller Y2O3-doped ZrO2 (YSZ) whiskers between them. Owing to the anisotropic fibrillar microstructure, Al2O3–YAG–YSZ ternary eutectics present high strength and toughness at ambient temperature while they exhibit superplastic behavior at 1600 K and above. Careful examination of the deformed samples by transmission electron microscopy did not show any evidence of dislocation activity and superplastic deformation was attributed to mass-transport by diffusion within the nanometric domains. This combination of high strength and toughness at ambient temperature together with the ability to support large deformations without failure above 1600 K is unique and shows a large potential to develop new structural materials for very high temperature structural applications.
Resumo:
An extruded Mg–1Mn–1Nd (wt%) (MN11) alloy was tested in tension in an SEM at temperatures of 323K (50°C), 423 K (150°C), and 523 K (250°C) to analyse the local deformation mechanisms through in situ observations. Electron backscatter diffraction was performed before and after the deformation. It was found that the tensile strength decreased with increasing temperature, and the relative activity of different twinning and slip systems was quantified. At 323K (50C), extension twinning, basal, prismatic (a) and pyramidal (c+a) slip were active. Much less extension twinning was observed at 423K (150ºC) while basal slip and prismatic (a) slip were dominant and presented similar activities. At 523K (250ºC), twinning was not observed, and basal slip controlled the deformation.
Resumo:
Computational homogenization by means of the finite element analysis of a representative volume element of the microstructure is used to simulate the deformation of nanostructured Ti. The behavior of each grain is taken into account using a single crystal elasto-viscoplastic model which includes the microscopic mechanisms of plastic deformation by slip along basal, prismatic and pyramidal systems. Two different representations of the polycrystal were used. Each grain was modeled with one cubic finite element in the first one while many cubic elements were used to represent each grain in the second one, leading to a model which includes the effect of grain shape and size in a limited number of grains due to the computational cost. Both representations were used to simulate the tensile deformation of nanostructured Ti processed by ECAP-C as well as the drawing process of nanostructured Ti billets. It was found that the first representation based in one finite element per grain led to a stiffer response in tension and was not able to predict the texture evolution during drawing because the strain gradient within each grain could not be captured. On the contrary, the second representation of the polycrystal microstructure with many finite elements per grain was able to predict accurately the deformation of nanostructured Ti.
Resumo:
The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a c-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 �C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (r>400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.