13 resultados para Periodic dividends
em Universidad Politécnica de Madrid
Resumo:
In this paper, a numerical study is made of simple bi-periodic binary diffraction gratings for solar cell applications. The gratings consist of hexagonal arrays of elliptical towers and wells etched directly into the solar cell substrate. The gratings are applied to two distinct solar cell technologies: a quantum dot intermediate band solar cell (QD-IBSC) and a crystalline silicon solar cell (SSC). In each case, the expected photocurrent increase due to the presence of the grating is calculated assuming AM1.5D illumination. For each technology, the grating period, well/tower depth and well/tower radii are optimised to maximise the photocurrent. The optimum parameters are presented. Results are presented for QD-IBSCs with a range of quantum dot layers and for SSCs with a range of thicknesses. For the QD-IBSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with less than 70 quantum dot layers. In a QD-IBSC with 50 quantum dot layers equipped with the optimum grating, the weak intermediate band to conduction band transition absorbs roughly half the photons in the corresponding sub-range of the AM1.5D spectrum. For the SSC, it is found that the optimised grating leads to an absorption enhancement above that calculated for an ideally Lambertian scatterer for cells with thicknesses of 10 ?m or greater. A 20um thick SSC equipped with the optimised grating leads to an absorption enhancement above that of a 200um thick SSC equipped with a planar back reflector.
Resumo:
We have recently demonstrated a biosensor based on a lattice of SU8 pillars on a 1 μm SiO2/Si wafer by measuring vertically reflectivity as a function of wavelength. The biodetection has been proven with the combination of Bovine Serum Albumin (BSA) protein and its antibody (antiBSA). A BSA layer is attached to the pillars; the biorecognition of antiBSA involves a shift in the reflectivity curve, related with the concentration of antiBSA. A detection limit in the order of 2 ng/ml is achieved for a rhombic lattice of pillars with a lattice parameter (a) of 800 nm, a height (h) of 420 nm and a diameter(d) of 200 nm. These results correlate with calculations using 3D-finite difference time domain method. A 2D simplified model is proposed, consisting of a multilayer model where the pillars are turned into a 420 nm layer with an effective refractive index obtained by using Beam Propagation Method (BPM) algorithm. Results provided by this model are in good correlation with experimental data, reaching a reduction in time from one day to 15 minutes, giving a fast but accurate tool to optimize the design and maximizing sensitivity, and allows analyzing the influence of different variables (diameter, height and lattice parameter). Sensitivity is obtained for a variety of configurations, reaching a limit of detection under 1 ng/ml. Optimum design is not only chosen because of its sensitivity but also its feasibility, both from fabrication (limited by aspect ratio and proximity of the pillars) and fluidic point of view. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
The fundamental objective of this Ph. D. dissertation is to demonstrate that, under particular circumstances which cover most of the structures with practical interest, periodic structures can be understood and analyzed by means of closed waveguide theories and techniques. To that aim, in the first place a transversely periodic cylindrical structure is considered and the wave equation, under a combination of perfectly conducting and periodic boundary conditions, is studied. This theoretical study runs parallel to the classic analysis of perfectly conducting closed waveguides. Under the light shed by the aforementioned study it is clear that, under certain very common periodicity conditions, transversely periodic cylindrical structures share a lot of properties with closed waveguides. Particularly, they can be characterized by a complete set of TEM, TE and TM modes. As a result, this Ph. D. dissertation introduces the transversely periodic waveguide concept. Once the analogies between the modes of a transversely periodic waveguide and the ones of a closed waveguide have been established, a generalization of a well-known closed waveguide characterization method, the generalized Transverse Resonance Technique, is developed for the obtention of transversely periodic modes. At this point, all the necessary elements for the consideration of discontinuities between two different transversely periodic waveguides are at our disposal. The analysis of this type of discontinuities will be carried out by means of another well known closed waveguide method, the Mode Matching technique. This Ph. D. dissertation contains a sufficient number of examples, including the analysis of a wire-medium slab, a cross-shaped patches periodic surface and a parallel plate waveguide with a textured surface, that demonstrate that the Transverse Resonance Technique - Mode Matching hybrid is highly precise, efficient and versatile. Thus, the initial statement: ”periodic structures can be understood and analyzed by means of closed waveguide theories and techniques”, will be corroborated. Finally, this Ph. D. dissertation contains an adaptation of the aforementioned generalized Transverse Resonance Technique by means of which the analysis of laterally open periodic waveguides, such as the well known Substrate Integrated Waveguides, can be carried out without any approximation. The analysis of this type of structures has suscitated a lot of interest in the recent past and the previous analysis techniques proposed always resorted to some kind of fictitious wall to close the structure. vii Resumen El principal objetivo de esta tesis doctoral es demostrar que, bajo ciertas circunstancias que se cumplen para la gran mayoría de estructuras con interés práctico, las estructuras periódicas se pueden analizar y entender con conceptos y técnicas propias de las guías de onda cerradas. Para ello, en un primer lugar se considera una estructura cilíndrical transversalmente periódica y se estudia la ecuación de onda bajo una combinación de condiciones de contorno periódicas y de conductor perfecto. Este estudio teórico y de caracter general, sigue el análisis clásico de las guías de onda cerradas por conductor eléctrico perfecto. A la luz de los resultados queda claro que, bajo ciertas condiciones de periodicidad (muy comunes en la práctica) las estructuras cilíndricas transversalmente periódicas guardan multitud de analogías con las guías de onda cerradas. En particular, pueden ser descritas mediante un conjunto completo de modos TEM, TE y TM. Por ello, ésta tesis introduce el concepto de guía de onda transversalmente periódica. Una vez establecidas las similitudes entre las soluciones de la ecuación de onda, bajo una combinación de condiciones de contorno periódicas y de conductor perfecto, y los modos de guías de onda cerradas, se lleva a cabo, con éxito, la adaptación de un conocido método de caracterización de guías de onda cerradas, la técnica de la Resonancia Transversal Generalizada, para la obtención de los modos de guías transversalmente periódicas. En este punto, se tienen todos los elementos necesarios para considerar discontinuidades entre guías de onda transversalmente periódicas. El analisis de este tipo de discontinuidades se llevará a cabo mediante otro conocido método de análisis de estructuras cerradas, el Ajuste Modal. Esta tesis muestra multitud de ejemplos, como por ejemplo el análisis de un wire-medium slab, una superficie de parches con forma de cruz o una guía de placas paralelas donde una de dichas placas tiene cierta textura, en los que se demuestra que el método híbrido formado por la Resonancia Transversal Generalizada y el Ajuste Modal, es tremendamente preciso, eficiente y versátil y confirmará la validez de el enunciado inicial: ”las estructuras periódicas se pueden analizar y entender con conceptos y técnicas propias de las guías de onda cerradas” Para terminar, esta tésis doctoral incluye también una modificación de la técnica de la Resonancia Transversal Generalizada mediante la cual es posible abordar el análisis de estructuras periódica abiertas en los laterales, como por ejemplo las famosas guías de onda integradas en sustrato, sin ninguna aproximación. El análisis de este tipo de estructuras ha despertado mucho interés en los últimos años y las técnicas de análisis propuestas hasta ix el momento acostumbran a recurrir a algún tipo de pared ficticia para simular el carácter abierto de la estructura.
Resumo:
We study a model of nonequilibrium quantum transport of particles and energy in a many-body system connected to mesoscopic Fermi reservoirs (the so-called meso-reservoirs). We discuss the conservation laws of particles and energy within our setup as well as the transport properties of quasi-periodic and disordered chains.
Resumo:
An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.
Resumo:
Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite’s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical length is dynamically equivalent to the perturbation produced by an oblate central body on a mass-point satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.
Resumo:
Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined.
Resumo:
Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite?s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical dimension is dynamically equivalent to the perturbation produced by an oblate central body on a masspoint satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.
Resumo:
In this paper, we study a robot swarm that has to perform task allocation in an environment that features periodic properties. In this environment, tasks appear in different areas following periodic temporal patterns. The swarm has to reallocate its workforce periodically, performing a temporal task allocation that must be synchronized with the environment to be effective. We tackle temporal task allocation using methods and concepts that we borrow from the signal processing literature. In particular, we propose a distributed temporal task allocation algorithm that synchronizes robots of the swarm with the environment and with each other. In this algorithm, robots use only local information and a simple visual communication protocol based on light blinking. Our results show that a robot swarm that uses the proposed temporal task allocation algorithm performs considerably more tasks than a swarm that uses a greedy algorithm.
Resumo:
The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main result in this paper is a very simple characterization of the hyperbolicity of a large class of periodic planar graphs.
Resumo:
This article presents a new and computationally efficient method of analysis of a railway track modelled as a continuous beam of 2N spans supported by elastic vertical springs. The main feature of this method is its important reduction in computational effort with respect to standard matrix methods of structural analysis. In this article, the whole structure is considered to be a repetition of a single one. The analysis presented is applied to a simple railway track model, i.e. to a repetitive beam supported on vertical springs (sleepers). The proposed method of analysis is based on the general theory of spatially periodic structures. The main feature of this theory is the possibility to apply Discrete Fourier Transform (DFT) in order to reduce a large system of q(2N + 1) linear stiffness equilibrium equations to a set of 2N + 1 uncoupled systems of q equations each. In this way, a dramatic reduction of the computational effort of solving the large system of equations is achieved. This fact is particularly important in the analysis of railway track structures, in which N is a very large number (around several thousands), and q = 2, the vertical displacement and rotation, is very small. The proposed method allows us to easily obtain the exact solution given by Samartín [1], i.e. the continuous beam railway track response. The comparison between the proposed method and other methods of analysis of railway tracks, such as Lorente de Nó and Zimmermann-Timoshenko, clearly shows the accuracy of the obtained results for the proposed method, even for low values of N. In addition, identical results between the proposed and the Lorente methods have been found, although the proposed method seems to be of simpler application and computationally more efficient than the Lorente one. Small but significative differences occur between these two methods and the one developed by Zimmermann-Timoshenko. This article also presents a detailed sensitivity analysis of the vertical displacement of the sleepers. Although standard matrix methods of structural analysis can handle this railway model, one of the objectives of this article is to show the efficiency of DFT method with respect to standard matrix structural analysis. A comparative analysis between standard matrix structural analysis and the proposed method (DFT), in terms of computational time, input, output and also software programming, will be carried out. Finally, a URL link to a MatLab computer program list, based on the proposed method, is given
Resumo:
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χ ac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished.
Resumo:
The generation of identical droplets of controllable size in the micrometer range is a problem of much interest owing to the numerous technological applications of such droplets. This work reports an investigation of the regime of periodic emission of droplets from an electrified oscillating meniscus of a liquid of low viscosity and high electrical conductivity attached to the end of a capillary tube, which may be used to produce droplets more than ten times smaller than the diameter of the tube. To attain this periodic microdripping regime, termed axial spray mode II by Juraschek and Röllgen [R. Juraschek and F. W. Röllgen, Int. J. Mass Spectrom. 177, 1 (1998)], liquid is continuously supplied through the tube at a given constant flow rate, while a dc voltage is applied between the tube and a nearby counter electrode. The resulting electric field induces a stress at the surface of the liquid that stretches the meniscus until, in certain ranges of voltage and flow rate, it develops a ligament that eventually detaches, forming a single droplet, in a process that repeats itself periodically. While it is being stretched, the ligament develops a conical tip that emits ultrafine droplets, but the total mass emitted is practically contained in the main droplet. In the parametrical domain studied, we find that the process depends on two main dimensionless parameters, the flow rate nondimensionalized with the diameter of the tube and the capillary time, q, and the electric Bond number BE, which is a nondimensional measure of the square of the applied voltage. The meniscus oscillation frequency made nondimensional with the capillary time, f, is of order unity for very small flow rates and tends to decrease as the inverse of the square root of q for larger values of this parameter. The product of the meniscus mean volume times the oscillation frequency is nearly constant. The characteristic length and width of the liquid ligament immediately before its detachment approximately scale as powers of the flow rate and depend only weakly on the applied voltage. The diameter of the main droplets nondimensionalized with the diameter of the tube satisfies dd≈(6/π)1/3(q/f)1/3, from mass conservation, while the electric charge of these droplets is about 1/4 of the Rayleigh charge. At the minimum flow rate compatible with the periodic regimen, the dimensionless diameter of the droplets is smaller than one-tenth, which presents a way to use electrohydrodynamic atomization to generate droplets of highly conducting liquids in the micron-size range, in marked contrast with the cone-jet electrospray whose typical droplet size is in the nanometric regime for these liquids. In contrast with other microdripping regimes where the mass is emitted upon the periodic formation of a narrow capillary jet, the present regime gives one single droplet per oscillation, except for the almost massless fine aerosol emitted in the form of an electrospray.