11 resultados para Pavements, Porous
em Universidad Politécnica de Madrid
Resumo:
The aim of this work is the theoretical study of the band alignment between the two components of a hybrid organic-inorganic solar-cell. The working organic molecules are metal tetra-sulphonated phthalocyanines (M-Pc) and the inorganic material is nano-porous ZnO growth in the 001 direction. The theoretical calculations are being made using the density functional theory (DFT) using a GGA functional with the SIESTA code, which projects electron wave functions and density onto a real space grid and uses as basis set a linear combination of numerical, finite-range localized atomic orbitals. We also used the DFT+U method included in the code that allows a semi-empirical inclusion of electronic correlations in the description of electronic spectra for systems such as zinc oxide.
Resumo:
Diffusion controls the gaseous transport process in soils when advective transport is almost null. Knowledge of the soil structure and pore connectivity are critical issues to understand and modelling soil aeration, sequestration or emission of greenhouse gasses, volatilization of volatile organic chemicals among other phenomena. In the last decades these issues increased our attention as scientist have realize that soil is one of the most complex materials on the earth, within which many biological, physical and chemical processes that support life and affect climate change take place. A quantitative and explicit characterization of soil structure is difficult because of the complexity of the pore space. This is the main reason why most theoretical approaches to soil porosity are idealizations to simplify this system. In this work, we proposed a more realistic attempt to capture the complexity of the system developing a model that considers the size and location of pores in order to relate them into a network. In the model we interpret porous soils as heterogeneous networks where pores are represented by nodes, characterized by their size and spatial location, and the links representing flows between them. In this work we perform an analysis of the community structure of porous media of soils represented as networks. For different real soils samples, modelled as heterogeneous complex networks, spatial communities of pores have been detected depending on the values of the parameters of the porous soil model used. These types of models are named as Heterogeneous Preferential Attachment (HPA). Developing an exhaustive analysis of the model, analytical solutions are obtained for the degree densities and degree distribution of the pore networks generated by the model in the thermodynamic limit and shown that the networks exhibit similar properties to those observed in other complex networks. With the aim to study in more detail topological properties of these networks, the presence of soil pore community structures is studied. The detection of communities of pores, as groups densely connected with only sparser connections between groups, could contribute to understand the mechanisms of the diffusion phenomena in soils.
Resumo:
The wetting front is the zone where water invades and advances into an initially dry porous material and it plays a crucial role in solute transport through the unsaturated zone. Water is an essential part of the physiological process of all plants. Through water, necessary minerals are moved from the roots to the parts of the plants that require them. Water moves chemicals from one part of the plant to another. It is also required for photosynthesis, for metabolism and for transpiration. The leaching of chemicals by wetting fronts is influenced by two major factors, namely: the irregularity of the fronts and heterogeneity in the distribution of chemicals, both of which have been described by using fractal techniques. Soil structure can significantly modify infiltration rates and flow pathways in soils. Relations between features of soil structure and features of infiltration could be elucidated from the velocities and the structure of wetting fronts. When rainwater falls onto soil, it doesn?t just pool on surfaces. Water ?or another fluid- acts differently on porous surfaces. If the surface is permeable (porous) it seeps down through layers of soil, filling that layer to capacity. Once that layer is filled, it moves down into the next layer. In sandy soil, water moves quickly, while it moves much slower through clay soil. The movement of water through soil layers is called the the wetting front. Our research concerns the motion of a liquid into an initially dry porous medium. Our work presents a theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. The aim was to model the mass geometry interplay by using the fractal dimension D of a stationary wetting front. The plane corresponding to the image is divided in several squares (the minimum correspond to the pixel size) of size length ". We acknowledge the help of Prof. M. García Velarde and the facilities offered by the Pluri-Disciplinary Institute of the Complutense University of Madrid. We also acknowledge the help of European Community under project Multi-scale complex fluid flows and interfacial phenomena (PITN-GA-2008-214919). Thanks are also due to ERCOFTAC (PELNoT, SIG 14)
Resumo:
We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure.
Resumo:
Soil is well recognized as a highly complex system. The interaction and coupled physical, chemical, and biological processes and phenomena occurring in the soil environment at different spatial and temporal scales are the main reasons for such complexity. There is a need for appropriate methodologies to characterize soil porous systems with an interdisciplinary character. Four different real soil samples, presenting different textures, have been modeled as heterogeneous complex networks, applying a model known as the heterogeneous preferential attachment. An analytical study of the degree distributions in the soil model shows a multiscaling behavior in the connectivity degrees, leaving an empirically testable signature of heterogeneity in the topology of soil pore networks. We also show that the power-law scaling in the degree distribution is a robust trait of the soil model. Last, the detection of spatial pore communities, as densely connected groups with only sparser connections between them, has been studied for the first time in these soil networks. Our results show that the presence of these communities depends on the parameter values used to construct the network. These findings could contribute to understanding the mechanisms of the diffusion phenomena in soils, such as gas and water diffusion, development and dynamics of microorganisms, among others.
Resumo:
This paper refers to the numerical solution of the classical Darcy's problem of plane fluid through isotropic media. Regarding the numerical procedure,the Laplace equation, is a classical one in mathematical physics and several procedures have been devised in order to solve it. So as to show the capability of the method, the paper presents some exemples.
Resumo:
A simple and scalable chemical approach has been proposed for the generation of 1-dimensional nanostructures of two most important inorganic materials such as zinc oxide and cadmium sulfide. By controlling the growth habit of the nanostructures with manipulated reaction conditions, the diameter and uniformity of the nanowires/nanorods were tailored. We studied extensively optical behavior and structural growth of CdS NWs and ZnO NRs doped ferroelectric liquid crystal Felix-017/100. Due to doping band gap has been changed and several blue shifts occurred in photoluminescence spectra because of nanoconfinement effect and mobility of charges.
Resumo:
Scaling is becoming an increasingly important topic in the earth and environmental sciences as researchers attempt to understand complex natural systems through the lens of an ever-increasing set of methods and scales. The guest editors introduce the papers in this issue’s special section and present an overview of some of the work being done. Scaling remains one of the most challenging topics in earth and environmental sciences, forming a basis for our understanding of process development across the multiple scales that make up the subsurface environment. Tremendous progress has been made in discovery, explanation, and applications of scaling. And yet much more needs to be done and is being done as part of the modern quest to quantify, analyze, and manage the complexity of natural systems. Understanding and succinct representation of scaling properties can unveil underlying relationships between system structure and response functions, improve parameterization of natural variability and heterogeneity, and help us address societal needs by effectively merging knowledge acquired at different scales.
Resumo:
The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.
Resumo:
A general fractional porous medium equation
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.