6 resultados para Patched-conic
em Universidad Politécnica de Madrid
Resumo:
Synthetic derivation of closed formulae of the geometric characteristic of a conic given in Bézier form in terms of its control polygon, (P; Q; R) and weights, (1; w; 1g)
Resumo:
An asymptotic analysîs of the Eberstein-Glassman kinetic mechanlsm for the thermal décomposition of hydrazine is carried out. It is shown that at températures near 800°K and near 1000°K,and for hydrazine molar fractions of the order of unity, 10-2 the entire kinetics reduces to a single, overall reaction. Characteristic times for the chemical relaxation of ail active, intermediate species produced in the décomposition, and for the overall reaction, are obtained. Explicit expressions for the overall reaction rate and stoichiometry are given as functions of température, total molar concentration (or pressure)and hydrazine molar fraction. Approximate, patched expressions can then be obtained for values of température and hydrazine molar fraction between 750 and 1000°K, and 1 and 10-3 respectively.
Resumo:
The coupling between solar light radiation and laser rod medium in a solar pumped laser affects the efficiency of the laser. To optimize the pumping system, simulation of the two-stage pumping system with a Fresnel lens and conic pumping cavity is carried out with Tracepro software. According to the power density distribution along the axis at focal place of the Fresnel lens, the diameter and position of the pumping cavity window and the distance of the window from the Fresnel lens are optimized. The power density distributions along the laser rod axis of different cavity lengths and different cavity tapers are also analyzed. The optimal structure of taper cavity is obtained. The mirror relecting cavity and ceramic cavity are introduced in detail.
Resumo:
This is an account of some aspects of the geometry of Kahler affine metrics based on considering them as smooth metric measure spaces and applying the comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a version for Kahler affine metrics of Yau s Schwarz lemma for volume forms. By a theorem of Cheng and Yau, there is a canonical Kahler affine Einstein metric on a proper convex domain, and the Schwarz lemma gives a direct proof of its uniqueness up to homothety. The potential for this metric is a function canonically associated to the cone, characterized by the property that its level sets are hyperbolic affine spheres foliating the cone. It is shown that for an n -dimensional cone, a rescaling of the canonical potential is an n -normal barrier function in the sense of interior point methods for conic programming. It is explained also how to construct from the canonical potential Monge-Ampère metrics of both Riemannian and Lorentzian signatures, and a mean curvature zero conical Lagrangian submanifold of the flat para-Kahler space.
Resumo:
Como ya es conocido, los profesores de Matemáticas utilizamos los ejemplos como recursos de aprendizaje para enseñar algún contenido matemático concreto, de modo que las generalizaciones y abstracciones sean más fácilmente entendidas por los alumnos, pasando de lo concreto a lo abstracto, como otra forma de enseñar y practicar en Matemáticas. Esta metodología de trabajo se ve potenciada por el uso de dispositivos móviles llamados mobile-learning (m-learning) o educación móvil (educación-m), en español. Siguiendo esta línea de trabajo, se ha realizado el workshop de cónicas que se presenta en este artículo, empleando estas nuevas tecnologías (TIC) y con el objetivo de desarrollar aprendizajes activos en Geometría a través de la resolución de problemas en los primeros cursos de Grado en las ingenierías. ABSTRACT: As it is already known, math teachers, use examples as learning resources, to teach some specific math contents, so that generalizations and abstractions are more easily understood by students, from concrete to abstract, as another way of Mathematics teaching and training. This methodology is enhanced by the use of mobile devices, called mobile-learning (m-learning) o “educación móvil” (educación-m), in Spanish. Following this strategy, the workshop of conic sections shown in this paper has been carried out, using these new technologies (ICT) and in order to develop active learning in Geometry through problem-solving at the first years of engineering degrees.
Resumo:
Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.