24 resultados para Parametric urbanism
em Universidad Politécnica de Madrid
Resumo:
Un modelo numérico llamado elemento junta expansiva fue programado para simular la expansión mecánica del óxido y estudiar la fisuración en el hormigón circundante. El elemento junta expansiva trabaja con elementos finitos con fisura cohesiva embebida adaptable para simular la fractura del hormigón según el modelo de fisura cohesiva. Se ha comprobado que el modelo reproduce correctamente el patrón de fisuración del hormigón que se obtiene en ensayos de corrosión acelerada. En este trabajo, se realiza un estudio paramétrico del elemento junta expansiva para establecer los límites de los parámetros constitutivos del óxido. Se simula una cierta expansión variando los valores de los parámetros del óxido y se estudian la apertura de fisura y las tensiones resultantes en el hormigón. Se determina el rango de valores para los que los resultados de las simulaciones son prácticamente iguales, con el menor número posible de iteraciones.
Resumo:
Here, a novel and efficient moving object detection strategy by non-parametric modeling is presented. Whereas the foreground is modeled by combining color and spatial information, the background model is constructed exclusively with color information, thus resulting in a great reduction of the computational and memory requirements. The estimation of the background and foreground covariance matrices, allows us to obtain compact moving regions while the number of false detections is reduced. Additionally, the application of a tracking strategy provides a priori knowledge about the spatial position of the moving objects, which improves the performance of the Bayesian classifier
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, in particular, Java source and bytecode. However, while most existing work deals with the problem of flnding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying flxpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based—) flxpoint algorithms rely on relatively inefHcient techniques for solving inter-procedural caligraphs or are speciflc and tied to particular analyses. We also argüe that the design of an efficient fixpoint algorithm is pivotal to supporting the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. The algorithm is parametric -in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins"-, multivariant, and flow-sensitive. Also, is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are given and discussed with an example. We also provide some performance data from a preliminary implementation of the analysis.
Resumo:
Abstract interpretation has been widely used for the analysis of object-oriented languages and, more precisely, Java source and bytecode. However, while most of the existing work deals with the problem of finding expressive abstract domains that track accurately the characteristics of a particular concrete property, the underlying fixpoint algorithms have received comparatively less attention. In fact, many existing (abstract interpretation based) fixpoint algorithms rely on relatively inefficient techniques to solve inter-procedural call graphs or are specific and tied to particular analyses. We argue that the design of an efficient fixpoint algorithm is pivotal to support the analysis of large programs. In this paper we introduce a novel algorithm for analysis of Java bytecode which includes a number of optimizations in order to reduce the number of iterations. Also, the algorithm is parametric in the sense that it is independent of the abstract domain used and it can be applied to different domains as "plug-ins". It is also incremental in the sense that, if desired, analysis data can be saved so that only a reduced amount of reanalysis is needed after a small program change, which can be instrumental for large programs. The algorithm is also multivariant and flowsensitive. Finally, another interesting characteristic of the algorithm is that it is based on a program transformation, prior to the analysis, that results in a highly uniform representation of all the features in the language and therefore simplifies analysis. Detailed descriptions of decompilation solutions are provided and discussed with an example.
Resumo:
The objective of this paper is to analyse the influence of the variation of some parameters used in the analysis of the dynamic response of offshore structures under the action of wind generated waves. The structural response has been obtained by stochastic methods using two discretization models. One with lumped parameters, using translational degrees of freedom (d.o.f.) and the other with one-dimensional finite elements. Using each of these methods the problem has been solved with several d.o.f., analysing the influence of the number of d.o.f. on the results.
Resumo:
This paper presents a new fault detection and isolation scheme for dealing with simultaneous additive and parametric faults. The new design integrates a system for additive fault detection based on Castillo and Zufiria, 2009 and a new parametric fault detection and isolation scheme inspired in Munz and Zufiria, 2008 . It is shown that the so far existing schemes do not behave correctly when both additive and parametric faults occur simultaneously; to solve the problem a new integrated scheme is proposed. Computer simulation results are presented to confirm the theoretical studies.
Resumo:
Publicación de los resultados de la primera fase del proyecto “Integración de los espacios agrarios periurbanos en la planificación urbana y territorial desde el enfoque de los servicios de los ecosistemas - PAEc-SP” (financiado por el Plan Nacional de Investigación I+D+d 2008-2012), que se presentaron en el Seminario internacional celebrado en Madrid en noviembre de 2012. Esta segunda edición, de septiembre de 2013, incorpora las modificaciones realizadas a partir de los comentarios y recomendaciones de los expertos invitados, y de los agentes territoriales a los que se presentaron los primeros resultados de la investigación.
Resumo:
The purpose of this work is twofold: first, to develop a process to automatically create parametric models of the aorta that can adapt to any possible intraoperative deformation of the vessel. Second, it intends to provide the tools needed to perform this deformation in real time, by means of a non-rigid registration method. This dynamically deformable model will later be used in a VR-based surgery guidance system for aortic catheterism procedures, showing the vessel changes in real time.
Resumo:
The pendular motion of a giant censer (O Botafumeiro) that hangs in the transept of the cathedral of Santiago de Compostela, and is cyclically pumped by men who pull at the supporting rope, is analyzed. Maximum angular amplitude attainable, and number of cycles and time needed to attain it, are calculated; the results agree with observed values (~ 82°, ~ 17 cycles, ~ 80 seconds) to the few percent accuracy of both the analysis and the observations and parameter measurements. The energy gain in a pumping cycle is obtained for an arbitrary pumping procedure to two orders in the small fractional change of pendular length; the relevance of the ratio (characteristic radial acceleration during pumping)/g to the gain is discussed- Effects due to rope mass, air drag on both Censer and rope, and the fact that the Censer is not a point mass, are considered. If the pumping cycle is inverted once the maximum amplitude has been attained, the Censer could be swiftly brought to rest, avoiding the usual violent stop. Historically recorded accidents, rope shape, and the influence of relevant parameters on the motion are discussed.
Resumo:
Urbanismo de Zuazo en Caracas
Resumo:
Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.
Resumo:
In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.
Resumo:
The dynamic behaviour of a fishing vessel in waves is studied in order to reveal its parametric rolling characteristics. This paper presents experimental and numerical results in longitudinal regular waves. The experimental results are compared against the results of a time-domain non-linear strip theory model of ship motions in six degrees-of-freedom. These results contribute to the validation of the parametric rolling prediction method, so that it can be used as an assessment tool to evaluate both the susceptibility and severity of occurrence of parametric rolling at the early design stage of these types of vessels.
Resumo:
This article presents a mathematical method for producing hard-chine ship hulls based on a set of numerical parameters that are directly related to the geometric features of the hull and uniquely define a hull form for this type of ship. The term planing hull is used generically to describe the majority of hard-chine boats being built today. This article is focused on unstepped, single-chine hulls. B-spline curves and surfaces were combined with constraints on the significant ship curves to produce the final hull design. The hard-chine hull geometry was modeled by decomposing the surface geometry into boundary curves, which were defined by design constraints or parameters. In planing hull design, these control curves are the center, chine, and sheer lines as well as their geometric features including position, slope, and, in the case of the chine, enclosed area and centroid. These geometric parameters have physical, hydrodynamic, and stability implications from the design point of view. The proposed method uses two-dimensional orthogonal projections of the control curves and then produces three-dimensional (3-D) definitions using B-spline fitting of the 3-D data points. The fitting considers maximum deviation from the curve to the data points and is based on an original selection of the parameterization. A net of B-spline curves (stations) is then created to match the previously defined 3-D boundaries. A final set of lofting surfaces of the previous B-spline curves produces the hull surface.
Resumo:
Different methods to reduce the high suction caused by conical vortices have been reported in the literature: vertical parapets, either solid or porous, placed at the roof edges being the most analysed configuration. Another method for alleviating the high suction peaks due to conical vortices is the use of some non-standard parapet configuration like cantilever parapets. In this paper the influence of roof curvature on the conical vortex pattern appearing on a curved roof (Fig. 1) when subject to oblique winds is experimentally analysed by testing the mean pressure distribution on the curved roofs of low-rise building models in a wind tunnel. Also, the efficiency of cantilever parapets to reduce mean suction loads on curved roofs is experimentally checked. Very high suction loads have been measured on curved roofs, the magnitude of these high suction loads being significantly decreased when cantilever parapets are used. Thus, the suitability of these parapets to reduce wind pressure loads on curved roofs is demonstrated.