2 resultados para Parallel mechanics

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

When non linear physical systems of infinite extent are modelled, such as tunnels and perforations, it is necessary to simulate suitably the solution in the infinite as well as the non linearity. The finite element method (FEM) is a well known procedure for simulating the non linear behavior. However, the treatment of the infinite field with domain truncations is often questionable. On the other hand, the boundary element method (BEM) is suitable to simulate the infinite behavior without truncations. Because of this, by the combination of both methods, suitable use of the advantages of each one may be obtained. Several possibilities of FEM-BEM coupling and their performance in some practical cases are discussed in this paper. Parallelizable coupling algorithms based on domain decomposition are developed and compared with the most traditional coupling methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.