29 resultados para Paper monitoring
em Universidad Politécnica de Madrid
Resumo:
In Europe, Cardiovascular Diseases (CVD) are the leading source of death, causing 45% of all deceases. Besides, Heart Failure, the paradigm of CVD, mainly affects people older than 65. In the current aging society, the European MyHeart Project was created, whose mission is to empower citizens to fight CVD by leading a preventive lifestyle and being able to be diagnosed at an early stage. This paper presents the development of a Heart Failure Management System, based on daily monitoring of Vital Body Signals, with wearable and mobile technologies, for the continuous assessment of this chronic disease. The System makes use of the latest technologies for monitoring heart condition, both with wearable garments (e.g. for measuring ECG and Respiration); and portable devices (such as Weight Scale and Blood Pressure Cuff) both with Bluetooth capabilities
Resumo:
This paper reports a learning experience related to the acquisition of project management competences. Students from three different universities and backgrounds, cooperate in a common project that drives the learning-teaching process. Previous related works on this initiative have already evaluated the goodness of this multidisciplinary, project-based learning approach in the context of a new educative paradigm. Yet the innovative experience has allowed the authors to define a rubric in order to measure specific competences in project management. The study shows the rubric’s main aspects as well as competence acquisition evaluation alternatives, based in the metrics defined. Key indicators and specific reports obtained from data base fields in the web tool will support this work. As a result, new competences can be assessed, such ones like teamwork, problem solving, communication and leadership. Final goal is to provide an overall competence map to the students at the same time they improve their skills.
Resumo:
It is well known that many neurological diseases leave a fingerprint in voice and speech production. The dramatic impact of these pathologies in life quality is a growing concert. Many techniques have been designed for the detection, diagnose and monitoring the neurological disease. Most of them are costly or difficult to extend to primary services. The present paper shows that some neurological diseases can be traced a the level of voice production. The detection procedure would be based on a simple voice test. The availability of advanced tools and methodologies to monitor the organic pathology of voice would facilitate the implantation of these tests. The paper hypothesizes some of the underlying mechanisms affecting the production of voice and presents a general description of the methodological foundations for the voice analysis system which can estimate correlates to the neurological disease. A case of study is presented from spasmodic dysphonia to illustrate the possibilities of the methodology to monitor other neurological problems as well.
Resumo:
Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulationchamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.
Resumo:
Current nanometer technologies suffer within-die parameter uncertainties, varying workload conditions, aging, and temperature effects that cause a serious reduction on yield and performance. In this scenario, monitoring, calibration, and dynamic adaptation become essential, demanding systems with a collection of multi purpose monitors and exposing the need for light-weight monitoring networks. This paper presents a new monitoring network paradigm able to perform an early prioritization of the information. This is achieved by the introduction of a new hierarchy level, the threshing level. Targeting it, we propose a time-domain signaling scheme over a single-wire that minimizes the network switching activity as well as the routing requirements. To validate our approach, we make a thorough analysis of the architectural trade-offs and expose two complete monitoring systems that suppose an area improvement of 40% and a power reduction of three orders of magnitude compared to previous works.
Resumo:
The dramatic impact of neurological degenerative pathologies in life quality is a growing concern. It is well known that many neurological diseases leave a fingerprint in voice and speech production. Many techniques have been designed for the detection, diagnose and monitoring the neurological disease. Most of them are costly or difficult to extend to primary attention medical services. Through the present paper it will be shown how some neurological diseases can be traced at the level of phonation. The detection procedure would be based on a simple voice test. The availability of advanced tools and methodologies to monitor the organic pathology of voice would facilitate the implantation of these tests. The paper hypothesizes that some of the underlying mechanisms affecting the production of voice produce measurable correlates in vocal fold biomechanics. A general description of the methodological foundations for the voice analysis system which can estimate correlates to the neurological disease is shown. Some study cases will be presented to illustrate the possibilities of the methodology to monitor neurological diseases by voice
Resumo:
The integration of scientific knowledge about possible climate change impacts on water resources has a direct implication on the way water policies are being implemented and evolving. This is particularly true regarding various technical steps embedded into the EU Water Framework Directive river basin management planning, such as risk characterisation, monitoring, design and implementation of action programmes and evaluation of the "good status" objective achievements (in 2015). The need to incorporate climate change considerations into the implementation of EU water policy is currently discussed with a wide range of experts and stakeholders at EU level. Research trends are also on-going, striving to support policy developments and examining how scientific findings and recommendations could be best taken on board by policy-makers and water managers within the forthcoming years. This paper provides a snapshot of policy discussions about climate change in the context of the WFD river basin management planning and specific advancements of related EU-funded research projects. Perspectives for strengthening links among the scientific and policy-making communities in this area are also highlighted.
Resumo:
This paper presents a multiprotocol mobile application for building automation which supports and enables the integration of the most representative control technologies such as KNX, LonWorks and X-10. The application includes a real-time monitoring service. Finally, advanced control functionalities based on gestures recognition and predefined scenes have been implemented. This application has been developed and tested in the Energy Efficiency Research Facility located at CeDInt-UPM, where electrical loads, blinds and HVAC and lighting systems can be controlled.
Resumo:
There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.
Resumo:
Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.
Resumo:
Geologic storage of carbon dioxide (CO2) has been proposed as a viable means for reducing anthropogenic CO2 emissions. Once injection begins, a program for measurement, monitoring, and verification (MMV) of CO2 distribution is required in order to: a) research key features, effects and processes needed for risk assessment; b) manage the injection process; c) delineate and identify leakage risk and surface escape; d) provide early warnings of failure near the reservoir; and f) verify storage for accounting and crediting. The selection of the methodology of monitoring (characterization of site and control and verification in the post-injection phase) is influenced by economic and technological variables. Multiple Criteria Decision Making (MCDM) refers to a methodology developed for making decisions in the presence of multiple criteria. MCDM as a discipline has only a relatively short history of 40 years, and it has been closely related to advancements on computer technology. Evaluation methods and multicriteria decisions include the selection of a set of feasible alternatives, the simultaneous optimization of several objective functions, and a decision-making process and evaluation procedures that must be rational and consistent. The application of a mathematical model of decision-making will help to find the best solution, establishing the mechanisms to facilitate the management of information generated by number of disciplines of knowledge. Those problems in which decision alternatives are finite are called Discrete Multicriteria Decision problems. Such problems are most common in reality and this case scenario will be applied in solving the problem of site selection for storing CO2. Discrete MCDM is used to assess and decide on issues that by nature or design support a finite number of alternative solutions. Recently, Multicriteria Decision Analysis has been applied to hierarchy policy incentives for CCS, to assess the role of CCS, and to select potential areas which could be suitable to store. For those reasons, MCDM have been considered in the monitoring phase of CO2 storage, in order to select suitable technologies which could be techno-economical viable. In this paper, we identify techniques of gas measurements in subsurface which are currently applying in the phase of characterization (pre-injection); MCDM will help decision-makers to hierarchy the most suitable technique which fit the purpose to monitor the specific physic-chemical parameter.
Resumo:
This paper presents a multi-stage algorithm for the dynamic condition monitoring of a gear. The algorithm provides information referred to the gear status (fault or normal condition) and estimates the mesh stiffness per shaft revolution in case that any abnormality is detected. In the first stage, the analysis of coefficients generated through discrete wavelet transformation (DWT) is proposed as a fault detection and localization tool. The second stage consists in establishing the mesh stiffness reduction associated with local failures by applying a supervised learning mode and coupled with analytical models. To do this, a multi-layer perceptron neural network has been configured using as input features statistical parameters sensitive to torsional stiffness decrease and derived from wavelet transforms of the response signal. The proposed method is applied to the gear condition monitoring and results show that it can update the mesh dynamic properties of the gear on line.
Resumo:
The increase in CPU power and screen quality of todays smartphones as well as the availability of high bandwidth wireless networks has enabled high quality mobile videoconfer- encing never seen before. However, adapting to the variety of devices and network conditions that come as a result is still not a trivial issue. In this paper, we present a multiple participant videoconferencing service that adapts to different kind of devices and access networks while providing an stable communication. By combining network quality detection and the use of a multipoint control unit for video mixing and transcoding, desktop, tablet and mobile clients can participate seamlessly. We also describe the cost in terms of bandwidth and CPU usage of this approach in a variety of scenarios.
Resumo:
The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.
Resumo:
The inherent complexity of modern cloud infrastructures has created the need for innovative monitoring approaches, as state-of-the-art solutions used for other large-scale environments do not address specific cloud features. Although cloud monitoring is nowadays an active research field, a comprehensive study covering all its aspects has not been presented yet. This paper provides a deep insight into cloud monitoring. It proposes a unified cloud monitoring taxonomy, based on which it defines a layered cloud monitoring architecture. To illustrate it, we have implemented GMonE, a general-purpose cloud monitoring tool which covers all aspects of cloud monitoring by specifically addressing the needs of modern cloud infrastructures. Furthermore, we have evaluated the performance, scalability and overhead of GMonE with Yahoo Cloud Serving Benchmark (YCSB), by using the OpenNebula cloud middleware on the Grid’5000 experimental testbed. The results of this evaluation demonstrate the benefits of our approach, surpassing the monitoring performance and capabilities of cloud monitoring alternatives such as those present in state-of-the-art systems such as Amazon EC2 and OpenNebula.