2 resultados para Pancreatitis autoinmune
em Universidad Politécnica de Madrid
Resumo:
La diabetes mellitus es un trastorno del metabolismo de los carbohidratos producido por la insuficiente o nula producción de insulina o la reducida sensibilidad a esta hormona. Es una enfermedad crónica con una mayor prevalencia en los países desarrollados debido principalmente a la obesidad, la vida sedentaria y disfunciones en el sistema endocrino relacionado con el páncreas. La diabetes Tipo 1 es una enfermedad autoinmune en la que son destruidas las células beta del páncreas, que producen la insulina, y es necesaria la administración de insulina exógena. Un enfermo de diabetes Tipo 1 debe seguir una terapia con insulina administrada por la vía subcutánea que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida, esta terapia intenta imitar el perfil insulínico de un páncreas no patológico. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial”, que aportaría precisión, eficacia y seguridad para los pacientes, en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. Permitiría que el paciente no estuviera tan pendiente de su enfermedad. El páncreas artificial consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar usando la glucosa como información principal. Este trabajo presenta un método de control en lazo semi-cerrado mediante un sistema borroso experto basado en reglas. La regulación borrosa se fundamenta en la ambigüedad del lenguaje del ser humano. Esta incertidumbre sirve para la formación de una serie de reglas que representan el pensamiento humano, pero a la vez es el sistema que controla un proceso, en este caso el sistema glucorregulatorio. Este proyecto está enfocado en el diseño de un controlador borroso que haciendo uso de variables como la glucosa, insulina y dieta, sea capaz de restaurar la función endocrina del páncreas de forma tecnológica. La validación del algoritmo se ha realizado principalmente mediante experimentos en simulación utilizando una población de pacientes sintéticos, evaluando los resultados con estadísticos de primer orden y algunos más específicos como el índice de riesgo de Kovatchev, para después comparar estos resultados con los obtenidos por otros métodos de control anteriores. Los resultados demuestran que el control borroso (FBPC) mejora el control glucémico con respecto a un sistema predictivo experto basado en reglas booleanas (pBRES). El FBPC consigue reducir siempre la glucosa máxima y aumentar la mínima respecto del pBRES pero es en terapias desajustadas, donde el FBPC es especialmente robusto, hace descender la glucosa máxima 8,64 mg/dl, el uso de insulina es 3,92 UI menor, aumenta la glucosa mínima 3,32 mg/dl y lleva al rango de glucosa 80 – 110 mg/dl 15,33 muestras más. Por lo tanto se puede concluir que el FBPC realiza un mejor control glucémico que el controlador pBRES haciéndole especialmente efectivo, robusto y seguro en condiciones de desajustes de terapia basal y con gran capacidad de mejora futura. SUMMARY The diabetes mellitus is a metabolic disorder caused by a poor or null insulin secretion or a reduced sensibility to insulin. Diabetes is a chronic disease with a higher prevalence in the industrialized countries, mainly due to obesity, the sedentary life and endocrine disfunctions connected with the pancreas. Type 1 diabetes is a self-immune disease where the beta cells of the pancreas, which are the responsible of secreting insulin, are damaged. Hence, it is necessary an exogenous delivery of insulin. The Type 1 diabetic patient has to follow a therapy with subcutaneous insulin administration which should be adjusted to his/her metabolic needs and life style. This therapy tries to mimic the insulin profile of a non-pathological pancreas. Current technology lets the development of the so-called endocrine artificial pancreas that would provide accuracy, efficiency and safety to patients, in regards to the glycemic control normalization and reduction of the risk of hypoglycemic. In addition, it would help the patient not to be so concerned about his disease. The artificial pancreas has a continuous glucose sensor, an insulin infusion pump and a control algorithm, that calculates the insulin infusion using the glucose as main information. This project presents a method of control in semi-closed-loop, through an expert fuzzy system based on rules. The fuzzy regulation is based on the human language ambiguity. This uncertainty serves for construction of some rules that represent the human language besides it is the system that controls a process, in this case the glucoregulatory system. This project is focus on the design of a fuzzy controller that, using variables like glucose insulin and diet, will be able to restore the pancreas endocrine function with technology. The algorithm assessment has mainly been done through experiments in simulation using a population of synthetic patients, evaluating the results with first order statistical parameters and some other more specific such as the Kovatchev risk index, to compare later these results with the ones obtained in others previous methods of control. The results demonstrate that the fuzzy control (FBPC) improves the glycemic control connected with a predictive expert system based on Booleans rules (pBRES). The FBPC is always able to reduce the maximum level of glucose and increase the minimum level as compared with pBRES but it is in unadjusted therapies where FBPC is especially strong, it manages to decrease the maximum level of glucose and insulin used by 8,64 mg/dl and 3,92 UI respectively, also increases the value of minimum glucose by 3,32 mg/dl, getting 15,33 samples more inside the 80-110 mg/dl glucose rank. Therefore we can conclude that FBPC achieves a better glycemic control than the controller pBRES doing it especially effective, robust and safe in conditions of mismatch basal therapy and with a great capacity for future improvements.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.