2 resultados para Pair production

em Universidad Politécnica de Madrid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Screw dislocations in bcc metals display non-planar cores at zero temperature which result in high lattice friction and thermally-activated strain rate behavior. In bcc W, electronic structure molecular statics calculations reveal a compact, non-degenerate core with an associated Peierls stress between 1.7 and 2.8 GPa. However, a full picture of the dynamic behavior of dislocations can only be gained by using more efficient atomistic simulations based on semiempirical interatomic potentials. In this paper we assess the suitability of five different potentials in terms of static properties relevant to screw dislocations in pure W. Moreover, we perform molecular dynamics simulations of stress-assisted glide using all five potentials to study the dynamic behavior of screw dislocations under shear stress. Dislocations are seen to display thermally-activated motion in most of the applied stress range, with a gradual transition to a viscous damping regime at high stresses. We find that one potential predicts a core transformation from compact to dissociated at finite temperature that affects the energetics of kink-pair production and impacts the mechanism of motion. We conclude that a modified embedded-atom potential achieves the best compromise in terms of static and dynamic screw dislocation properties, although at an expense of about ten-fold compared to central potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the results of a water footprint (WF) assessment of five types of textiles commonly used for the production of jeans, including two different fibres (cotton and Lyocell fibre) and five corresponding production methods for spinning, dyeing and weaving. The results show that the fibre production is the stage with the highest water consumption, being cotton production particularly relevant. Therefore, the study pays particular attention to the water footprint of cotton production and analyses the effects of external factors influencing the water footprint of a product, in this case, the incentives provided by the EU Common Agricultural Policy (CAP), and the relevance of agricultural practices to the water footprint of a product is emphasised. An extensification of the crop production led to higher WF per unit, but a lower overall pressure on the basins water resources. This study performs a sustainability assessment of the estimated cotton WFs with the water scarcity index, as proposed by Hoekstra et al. (2011), and shows their variations in different years as a result of different water consumption by crops in the rest of the river basin. In our case, we applied the assessment to the Guadalquivir, Guadalete and Barbate river basins, three semi-arid rivers in South Spain. Because they are found to be relevant, the available water stored in dams and the outflow are also incorporated as reference points for the sustainability assessment. The study concludes that, in the case of Spanish cotton production, the situation of the basin and the policy impact are more relevant for the status of the basin s water resources than the actual WF of cotton production. Therefore, strategies aimed at reducing the impact of the water footprint of a product need to analyse both the WF along the value chain and within the local context.