4 resultados para Page, Curtis Hidden

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antarctica contains some of the most challenging environmental conditions on the planet due to freezing temperatures, prolonged winters and lack of liquid water. Whereas 99.7% of Antarctica is permanently covered by ice and snow, some coastal areas and mountain ridges have remained ice-free and are able to sustain populations of microinvertebrates. Tardigrades are one of the more dominant groups of microfauna in soil and limno-terrestrial habitats, but little is known of their diversity and distribution across Antarctica. Here, we examine tardigrades sampled from across an extensive region of continental Antarctica, and analyse and compare their partial mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences with those from the Antarctic Peninsula, maritime and sub-Antarctica, Tierra del Fuego and other worldwide locations in order to recognise operational taxonomic units (OTUs). From 439 new tardigrade COI sequences, we identified 98 unique haplotypes (85 from Antarctica) belonging to Acutuncus, Diphascon, Echiniscus, Macrobiotus, Milnesium and unidentified Parachela. Operational taxonomic units were delimited by Poisson tree processes and general mixed Yule coalescent methods, resulting in 58 and 55 putative species, respectively. Most tardigrades appear to be locally endemic (i.e. restricted to a single geographic region), but some (e.g. Acutuncus antarcticus (Richters, 1904)) are widespread across continental Antarctica. Our molecular results reveal: (i) greater diversity than has previously been appreciated with distinct OTUs that potentially represent undescribed species, and (ii) a lack of connectivity between most OTUs from continental Antarctica and those from other Antarctic geographical zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of the increasing presence of Semantic Web Facilities, only a limited amount of the available resources in the Internet provide a semantic access. Recent initiatives such as the emerging Linked Data Web are providing semantic access to available data by porting existing resources to the semantic web using different technologies, such as database-semantic mapping and scraping. Nevertheless, existing scraping solutions are based on ad-hoc solutions complemented with graphical interfaces for speeding up the scraper development. This article proposes a generic framework for web scraping based on semantic technologies. This framework is structured in three levels: scraping services, semantic scraping model and syntactic scraping. The first level provides an interface to generic applications or intelligent agents for gathering information from the web at a high level. The second level defines a semantic RDF model of the scraping process, in order to provide a declarative approach to the scraping task. Finally, the third level provides an implementation of the RDF scraping model for specific technologies. The work has been validated in a scenario that illustrates its application to mashup technologies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some ideas about a new neural network architecture that can be compared to a Taylor analysis when dealing with patterns. Such architecture is based on lineal activation functions with an axo-axonic architecture. A biological axo-axonic connection between two neurons is defined as the weight in a connection in given by the output of another third neuron. This idea can be implemented in the so called Enhanced Neural Networks in which two Multilayer Perceptrons are used; the first one will output the weights that the second MLP uses to computed the desired output. This kind of neural network has universal approximation properties even with lineal activation functions. There exists a clear difference between cooperative and competitive strategies. The former ones are based on the swarm colonies, in which all individuals share its knowledge about the goal in order to pass such information to other individuals to get optimum solution. The latter ones are based on genetic models, that is, individuals can die and new individuals are created combining information of alive one; or are based on molecular/celular behaviour passing information from one structure to another. A swarm-based model is applied to obtain the Neural Network, training the net with a Particle Swarm algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and mechanical media such as film, television, photography, offset, are just examples of how fast and important the technological development had become in society. Nevertheless the outcoming technologies and the continuous development had provided newer and better possibilities every time for having advanced services. Nowadays multi-view video has been developed with different tools and applications, having as main goal to be more innovative and bring within technical offerings in a friendly for all users in general, in terms of managing and accessibility (just internet connection is needed). The intention of all technologies is to generate an innovation in order to gain more users and start being popular, therefore is important to realize an implementation in this case. In such terms realizing about the outreach that Multi View Video, an importance to become more global in this days, an application that supports this aim such as the possibility of language selection within the use of a same scenario has been realized. Finally is important to point out that thanks to the Multi View Video's continuous progress in technology a more intercultural market will be reachable, making of it a shared society growth on the world's global development. � ��� ���� ������� ��� �� ��� ��� �������� ��� ���� ��� ��� ������ ���������� � ���� � �� ���� ���� � ���� �� � � ���� � � ��� ��� �� ��� �� � ��� ��� ��������� �� � ����� ��������� ��� � ��� � ���� ���� ����� ����������� ��� ��� �� � ������������� �� �������� �������� ������� ������� �� ����� �������� ��� � � �� ���� �������� ���� ����� �������� �������� �� ������ ���� �� � ����������� ������������� � � ��!��� � � � �� ������� ��� ��������"������ � �� ���������� �������� ��� �� ������ � ����� ����� ��� ��� �� � �� �� ���� �� ��� �� ���� � � � �� ��� ������ �� �� ��� �� �� ��� �� � �� ��� #�� ��� ������� � ��� �� � �� ������$������� � ��� ��� # ������� � ����� ����� �� ���� �% ���% �������� ��� ����� ����������� �� ������� �� � �� ������ ��� ���� �� ��� �� � ����� �� � �� � �� ����� ��� ��� ���� � � �� ��� ��������� ����� ��� � � �� ���������������������� ����������� ��� #����& ������ �� ��� �� � ���� � ��� � �� � ���'�� �� ��� ��� � % ��� % ���(�� ��� ������ � �� ���� �� ���������� ���� �� � � ��� � ����� '� �� ��� ��� ���������� ��' ������ ������ ������ � ��� �� ����� ����� ��(������������������� ��� � �