34 resultados para PULSE AMPLIFIERS

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the noise and gain measurement of microwave differential amplifiers using two passive baluns. A general model of the baluns is considered, including potential losses and phase/amplitude unbalances. This analysis allows de-embedding the actual gain and noise performance of the isolated amplifier by using single-ended measurements of the cascaded system and baluns. Finally, measured results from two amplifier prototypes are used to validate the theoretical principles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aunque se conocen muchos métodos precisos para medidas de humedad puntuales, hasta hace muy poco, no existían métodos in situ para la medida del contenido de humedad a escala de metros o de kilómetros, importantes cuando pensamos a nivel de cuenca hidrográfica. La fibra óptica ha sido muy utilizada en el área de las comunicaciones. Sin embargo, entre sus aplicaciones más recientes, destaca la de su uso para medir la temperatura incluso en grandes distancias (hasta 10 km) y con una alta frecuencia temporal, lo que ha abierto un amplio abanico de posibilidades muy importantes en el seguimiento medioambiental (Selker et al. 2006a; 2006b, Tyler et al. 2008; Westhoff et al., 2007; Freifeld et al., 2008). La precisión en la medida puede alcanzar ± 0,2ºC en una distancia de ± 25 cm. El método utilizado en los ensayos explicados en esta comunicación es el denominado “Distributed Fiber Optic Temperature Measurement” (medida distribuida de la temperatura con fibra óptica) o DFOT, que consiste en emitir un impulso óptico con láser y medir en el tiempo la señal reflejada en diferentes puntos de la fibra. Este método se ha utilizado en el estudio de filtraciones de minas abandonadas (Selker et al. 2006a) y en proyectos relacionados con el cambio climático, como en el estudio del deshielo en glaciares y balances hídricos en pequeñas cuencas (Selker et al. 2006b). Además, en medios porosos, se ha usado, con buenos resultados para la detección de rotura de diques en presas (Perzlmaier et al. 2004a y 2004b) y para la detección de entrada de agua en vertederos urbanos con cubierta vegetal (Weiss, 2003b). Imhoff et al. (2006) en su revisión de técnicas de medidas de contenido de agua en el suelo destaca el uso del “DFOT heat pulse method” (método DFOT del pulso de calor).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers. The solution of the envelope amplifier is to combine the proposed converter with a linear regulator in series. High system efficiency can be obtained through modulating the supply voltage of the envelope amplifier with the fast output voltage variation of the converter working with several particular duty cycles that achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a look-up table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray free-electron lasers1,2 delivering up to 131013 coherent photons in femtosecond pulses are bringing about a revolution in X-ray science3?5. However, some plasma-based soft X-ray lasers6 are attractive because they spontaneously emit an even higher number of photons (131015), but these are emitted in incoherent and long (hundreds of picoseconds) pulses7 as a consequence of the amplification of stochastic incoherent self-emission. Previous experimental attempts to seed such amplifiers with coherent femtosecond soft X-rays resulted in as yet unexplained weak amplification of the seed and strong amplification of incoherent spontaneous emission8. Using a time-dependent Maxwell?Bloch model describing the amplification of both coherent and incoherent soft X-rays in plasma, we explain the observed inefficiency and propose a new amplification scheme based on the seeding of stretched high harmonics using a transposition of chirped pulse amplification to soft X-rays. This scheme is able to deliver 531014 fully coherent soft X-ray photons in 200 fs pulses and with a peak power of 20 GW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern transmitters usually have to amplify and transmit signals with simultaneous envelope and phase modulation. Due to this property of the transmitted signal, linear power amplifiers (class A, B, or AB) are usually used as a solution for the power amplifier stage. These amplifiers have high linearity, but suffer from low efficiency when the transmitted signal has high peak-to-average power ratio. The Kahn envelope elimination and restoration technique is used to enhance the efficiency of RF transmitters, by combining highly efficient, nonlinear RF amplifier (class E) with a highly efficient envelope amplifier in order to obtain a linear and highly efficient RF amplifier. This paper presents a solution for the envelope amplifier based on a multilevel converter in series with a linear regulator. The multilevel converter is implemented by employing voltage dividers based on switching capacitors. The implemented envelope amplifier can reproduce any signal with a maximum spectral component of 2 MHz and give instantaneous maximum power of 50 W. The efficiency measurements show that when the signals with low average value are transmitted, the implemented prototypes have up to 20% higher efficiency than linear regulators used as a conventional solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an experimental study on the generation of high-peak-power short optical pulses from a fully integrated master-oscillator power-amplifier emitting at 1.5 μm. High-peak-power (2.7 W) optical pulses with short duration (100 ps) have been generated by gain switching the master oscillator under optimized driving conditions. The static and dynamic characteristics of the device have been studied as a function of the driving conditions. The ripples appearing in the power-current characteristics under cw conditions have been attributed to mode hopping between the master oscillator resonant mode and the Fabry-Perot modes of the entire device cavity. Although compound cavity effects have been evidenced to affect the static and dynamic performance of the device, we have demonstrated that trains of single-mode short optical pulses at gigahertz frequencies can be conveniently generated in these devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electrically tunable system for the control of optical pulse sequences is proposed and demonstrated. It is based on the use of an electrooptic modulator for periodic phase modulation followed by a dispersive device to obtain the temporal Talbot effect. The proposed configuration allows for repetition rate multiplication with different multiplication factors and with the simultaneous control of the pulse train envelope by simply changing the electrical signal driving the modulator. Simulated and experimental results for an input optical pulse train of 10 GHz are shown for different multiplication factors and envelope shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through the use of the Distributed Fiber Optic Temperature Measurement (DFOT) method, it is possible to measure the temperature in small intervals (on the order of centimeters) for long distances (on the order of kilometers) with a high temporal frequency and great accuracy. The heat pulse method consists of applying a known amount of heat to the soil and monitoring the temperature evolution, which is primarily dependent on the soil moisture content. The use of both methods, which is called the active heat pulse method with fiber optic temperature sensing (AHFO), allows accurate soil moisture content measurements. In order to experimentally study the wetting patterns, i.e. shape, size, and the water distribution, from a drip irrigation emitter, a soil column of 0.5 m of diameter and 0.6 m high was built. Inside the column, a fiber optic cable with a stainless steel sheath was placed forming three concentric helixes of diameters 0.2 m, 0.4 m and 0.6 m, leading to a 148 measurement point network. Before, during, and after the irrigation event, heat pulses were performed supplying electrical power of 20 W/m to the steel. The soil moisture content was measured with a capacitive sensor in one location at depths of 0.1 m, 0.2 m, 0.3 m and 0.4 m during the irrigation. It was also determined by the gravimetric method in several locations and depths before and right after the irrigation. The emitter bulb dimensions and shape evolution was satisfactorily measured during infiltration. Furthermore, some bulb's characteristics difficult to predict (e.g. preferential flow) were detected. The results point out that the AHFO is a useful tool to estimate the wetting pattern of drip irrigation emitters in soil columns and show a high potential for its use in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outline: • Introduction • Process Experimental Setup • Experimental Procedure • Experimental Results for Al2024-T351 and Ti6Al4V - Residual stresses - Tensile Strength - Fatigue Life • Discussion and Outlook - Prospects for technological applications of LSP

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of optical bistability in a vertical- cavity semiconductor optical amplifier (VCSOA) operated in reflection are reported. The dependences of the optical bistability in VCSOAs on the initial phase detuning and on the applied bias current are analyzed. The optical bistability is also studied for different numbers of superimposed periods in the top distributed bragg reflector (DBR) that conform the internal cavity of the device. The appearance of the X-bistable and the clockwise bistable loops is predicted theoretically in a VCSOA operated in reflection for the first time, to the best of our knowledge. Moreover, it is also predicted that the control of the VCSOA’s top reflectivity by the addition of new superimposed periods in its top DBR reduces by one order of magnitude the input power needed for the assessment of the X- and the clockwise bistable loop, compared to that required in in-plane semiconductor optical amplifiers. These results, added to the ease of fabricating two-dimensional arrays of this kind of device could be useful for the development of new optical logic or optical signal regeneration devices.