4 resultados para PROTEIN FAMILIES
em Universidad Politécnica de Madrid
Resumo:
The prevalence of exotic pet allergies has been increasing over the last decade. Years ago, the main allergy-causing domestic animals were dogs and cats, although nowadays there is an increasing number of allergic diseases related to insects, rodents, amphibians, fish, and birds, among others. The current socio-economic situation, in which more and more people have to live in small apartments, might be related to this tendency. The main allergic symptoms related to exotic pets are the same as those described for dog and cat allergy: respiratory symptoms. Animal allergens are therefore, important sensitizing agents and an important risk factor for asthma. There are three main protein families implicated in these allergies, which are the lipocalin superfamily, serum albumin family, and secretoglobin superfamily. Detailed knowledge of the characteristics of allergens is crucial to improvement treatment of uncommon-pet allergies.
Resumo:
Plant allergens have hitherto been included in only several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals.
Resumo:
Allergens are responsible for the Th2 response in patients as part of complex mixtures of proteins, fatty acids and other molecules. Plant allergens have hitherto been included in several protein families that share no common biochemical features. Their physical, biochemical and immunological characteristics have been widely studied, but no definite conclusion has been reached about what makes a protein an allergen. N-glycosylation is characteristic of plant allergen sources but is not present in mammals.
Resumo:
Protein-coding gene families are sets of similar genes with a shared evolutionary origin and, generally, with similar biological functions. In plants, the size and role of gene families has been only partially addressed. However, suitable bioinformatics tools are being developed to cluster the enormous number of sequences currently available in databases. Specifically, comparative genomic databases promise to become powerful tools for gene family annotation in plant clades. In this review, I evaluate the data retrieved from various gene family databases, the ease with which they can be extracted and how useful the extracted information is.