2 resultados para PRIMARY IMMUNODEFICIENCY DISEASES
em Universidad Politécnica de Madrid
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
In this study, a device based on patient motion capture is developed for the reliable and non-invasive diagnosis of neurodegenerative diseases. The primary objective of this study is the classification of differential diagnosis between Parkinson's disease (PD) and essential tremor (ET). The DIMETER system has been used in the diagnoses of a significant number of patients at two medical centers in Spain. Research studies on classification have primarily focused on the use of well-known and reliable diagnosis criteria developed by qualified personnel. Here, we first present a literature review of the methods used to detect and evaluate tremor; then, we describe the DIMETER device in terms of the software and hardware used and the battery of tests developed to obtain the best diagnoses. All of the tests are classified and described in terms of the characteristics of the data obtained. A list of parameters obtained from the tests is provided, and the results obtained using multilayer perceptron (MLP) neural networks are presented and analyzed.