20 resultados para PREDICTION METHOD
em Universidad Politécnica de Madrid
Resumo:
The dynamic behaviour of a fishing vessel in waves is studied in order to reveal its parametric rolling characteristics. This paper presents experimental and numerical results in longitudinal regular waves. The experimental results are compared against the results of a time-domain non-linear strip theory model of ship motions in six degrees-of-freedom. These results contribute to the validation of the parametric rolling prediction method, so that it can be used as an assessment tool to evaluate both the susceptibility and severity of occurrence of parametric rolling at the early design stage of these types of vessels.
Resumo:
Este estudio profundiza en la estimación de variables forestales a partir de información LiDAR en el Valle de la Fuenfría (Cercedilla, Madrid). Para ello se dispone de dos vuelos realizados con sensor LiDAR en los años 2002 y 2011 y en el invierno de 2013 se ha realizado un inventario de 60 parcelas de campo. En primer lugar se han estimado seis variables dasométricas (volumen, área basimétrica, biomasa total, altura dominante, densidad y diámetro medio cuadrático) para 2013, tanto a nivel de píxel como a nivel de rodal y monte. Se construyeron modelos de regresión lineal múltiple que permitieron estimar con precisión dichas variables. En segundo lugar, se probaron diferentes métodos para la estimación de la distribución diamétrica. Por un lado, el método de predicción de percentiles y, por otro lado, el método de predicción de parámetros. Este segundo método se probó para una función Weibull simple, una función Weibull doble y una combinación de ambas según la distribución que mejor se ajustaba a cada parcela. Sin embargo, ninguno de los métodos ha resultado suficientemente válido para predecir la distribución diamétrica. Por último se estimaron el crecimiento en volumen y área basimétrica a partir de la comparación de los vuelos del 2002 y 2011. A pesar de que la tecnología LiDAR era diferente y solo se disponía de un inventario completo, realizado en 2013, los modelos construidos presentan buenas bondades de ajuste. Asimismo, el crecimiento a nivel de pixel se ha mostrado estar relacionado de forma estadísticamente significativa con la pendiente, orientación y altitud media del píxel. ABSTRACT This project goes in depth on the estimation of forest attributes by means of LiDAR data in Fuenfria’s Valley (Cercedilla, Madrid). The available information was two LiDAR flights (2002 and 2011) and a forest inventory consisting of 60 plots (2013). First, six different dasometric attributes (volume, basal area, total aboveground biomass, top height, density and quadratic mean diameter) were estimated in 2013 both at a pixel, stand and forest level. The models were developed using multiple linear regression and were good enough to predict these attributes with great accuracy. Second, the measured diameter distribution at each plot was fitted to a simple and a double Weibull distribution and different methods for its estimation were tested. Neither parameter prediction method nor percentile prediction method were able to account for the diameter distribution. Finally, volume and top height growths were estimated comparing 2011 LiDAR flight with 2002 LiDAR flight. Even though the LiDAR technology was not the same and there was just one forest inventory with sample plots, the models properly explain the growth. Besides, growth at each pixel is significantly related to its average slope, orientation and altitude.
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
Determining as accurate as possible spent nuclear fuel isotopic content is gaining importance due to its safety and economic implications. Since nowadays higher burn ups are achievable through increasing initial enrichments, more efficient burn up strategies within the reactor cores and the extension of the irradiation periods, establishing and improving computation methodologies is mandatory in order to carry out reliable criticality and isotopic prediction calculations. Several codes (WIMSD5, SERPENT 1.1.7, SCALE 6.0, MONTEBURNS 2.0 and MCNP-ACAB) and methodologies are tested here and compared to consolidated benchmarks (OECD/NEA pin cell moderated with light water) with the purpose of validating them and reviewing the state of the isotopic prediction capabilities. These preliminary comparisons will suggest what can be generally expected of these codes when applied to real problems. In the present paper, SCALE 6.0 and MONTEBURNS 2.0 are used to model the same reported geometries, material compositions and burn up history of the Spanish Van de llós II reactor cycles 7-11 and to reproduce measured isotopies after irradiation and decay times. We analyze comparisons between measurements and each code results for several grades of geometrical modelization detail, using different libraries and cross-section treatment methodologies. The power and flux normalization method implemented in MONTEBURNS 2.0 is discussed and a new normalization strategy is developed to deal with the selected and similar problems, further options are included to reproduce temperature distributions of the materials within the fuel assemblies and it is introduced a new code to automate series of simulations and manage material information between them. In order to have a realistic confidence level in the prediction of spent fuel isotopic content, we have estimated uncertainties using our MCNP-ACAB system. This depletion code, which combines the neutron transport code MCNP and the inventory code ACAB, propagates the uncertainties in the nuclide inventory assessing the potential impact of uncertainties in the basic nuclear data: cross-section, decay data and fission yields
Resumo:
The prediction of train induced vibration levels in structures close to railway tracks before track construction starts is important in order to avoid having to implement costly mitigation measures afterwards. The used models require an accurate characterization of the propagation medium i.e. the soil layers. To this end the spectral analysis of surface waves (SASW) method has been chosen among the active surface waves techniques available. As dynamic source a modal sledge hammer has been used. The generated vibrations have been measured at known offsets by means of several accelerometers. There are many parameters involved in estimating the experimental dispersion curve and, later on, thickness and propagation velocities of the different layers. Tests have been carried out at the Segovia railway station. Its main building covers some of the railway tracks and vibration problems in the building should be avoided. In the paper these tests as well as the influence of several parameters on the estimated soil profile will be detailed.
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
The influence of atmospheric gases and tropospheric phenomena becomes more relevant at frequencies within the THz band (100 GHz to 10 THz), severely affecting the propagation conditions. The use of radiosoundings in propagation studies is a well established measurement technique in order to collect information about the vertical structure of the atmosphere, from which gaseous and cloud attenuation can be estimated with the use of propagation models. However, some of these prediction models are not suitable to be used under rainy conditions. In the present study, a method to identify the presence of rainy conditions during radiosoundings is introduced, with the aim of filtering out these events from yearly statistics of predicted atmospheric attenuation. The detection procedure is based on the analysis of a set of parameters, some of them extracted from synoptical observations of weather (SYNOP reports) and other derived from radiosonde observations (RAOBs). The performance of the method has been evaluated under different climatic conditions, corresponding to three locations in Spain, where colocated rain gauge data were available. Rain events detected by the method have been compared with those precipitations identified by the rain gauge. The pertinence Received 26 June 2012, Accepted 31 July 2012, Scheduled 15 August 2012 * Corresponding author: Gustavo Adolfo Siles Soria (gsiles@grc.ssr.upm.es). 258 Siles et al. of the method is discussed on the basis of an analysis of cumulative distributions of total attenuation at 100 and 300 GHz. This study demonstrates that the proposed method can be useful to identify events probably associated to rainy conditions. Hence, it can be considered as a suitable algorithm in order to filter out this kind of events from annual attenuation statistics.
Resumo:
The use of seismic hysteretic dampers for passive control is increasing exponentially in recent years for both new and existing buildings. In order to utilize hysteretic dampers within a structural system, it is of paramount importance to have simplified design procedures based upon knowledge gained from theoretical studies and validated with experimental results. Non-linear Static Procedures (NSPs) are presented as an alternative to the force-based methods more common nowadays. The application of NSPs to conventional structures has been well established; yet there is a lack of experimental information on how NSPs apply to systems with hysteretic dampers. In this research, several shaking table tests were conducted on two single bay and single story 1:2 scale structures with and without hysteretic dampers. The maximum response of the structure with dampers in terms of lateral displacement and base shear obtained from the tests was compared with the prediction provided by three well-known NSPs: (1) the improved version of the Capacity Spectrum Method (CSM) from FEMA 440; (2) the improved version of the Displacement Coefficient Method (DCM) from FEMA 440; and (3) the N2 Method implemented in Eurocode 8. In general, the improved version of the DCM and N2 methods are found to provide acceptable accuracy in prediction, but the CSM tends to underestimate the response.
Resumo:
In the last years significant efforts have been devoted to the development of advanced data analysis tools to both predict the occurrence of disruptions and to investigate the operational spaces of devices, with the long term goal of advancing the understanding of the physics of these events and to prepare for ITER. On JET the latest generation of the disruption predictor called APODIS has been deployed in the real time network during the last campaigns with the new metallic wall. Even if it was trained only with discharges with the carbon wall, it has reached very good performance, with both missed alarms and false alarms in the order of a few percent (and strategies to improve the performance have already been identified). Since for the optimisation of the mitigation measures, predicting also the type of disruption is considered to be also very important, a new clustering method, based on the geodesic distance on a probabilistic manifold, has been developed. This technique allows automatic classification of an incoming disruption with a success rate of better than 85%. Various other manifold learning tools, particularly Principal Component Analysis and Self Organised Maps, are also producing very interesting results in the comparative analysis of JET and ASDEX Upgrade (AUG) operational spaces, on the route to developing predictors capable of extrapolating from one device to another.
Resumo:
This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.
Resumo:
The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes.
Resumo:
The size and complexity of cloud environments make them prone to failures. The traditional approach to achieve a high dependability for these systems relies on constant monitoring. However, this method is purely reactive. A more proactive approach is provided by online failure prediction (OFP) techniques. In this paper, we describe a OFP system for private IaaS platforms, currently under development, that combines di_erent types of data input, including monitoring information, event logs, and failure data. In addition, this system operates at both the physical and virtual planes of the cloud, taking into account the relationships between nodes and failure propagation mechanisms that are unique to cloud environments.
Resumo:
During the last two decades the topic of human induced vibration has attracted a lot of attention among civil engineering practitioners and academics alike. Usually this type of problem may be encountered in pedestrian footbridges or floors of paperless offices. Slender designs are becoming increasingly popular, and as a consequence, the importance of paying attention to vibration serviceability also increases. This paper resumes the results obtained from measurements taken at different points of an aluminium catwalk which is 6 m in length by 0.6 m in width. Measurements were carried out when subjecting the structure to different actions:1)Static test: a steel cylinder of 35 kg was placed in the middle of the catwalk; 2)Dynamic test: this test consists of exciting the structure with singles impulses; 3)Dynamic test: people walking on the catwalk. Identification of the mechanical properties of the structure is an achievement of the paper. Indirect methods were used to estimate properties including the support stiffness, the beam bending stiffness, the mass of the structure (using Rayleigh method and iterative matrix method), the natural frequency (using the time domain and frequency domain analysis) and the damping ratio (by calculating the logarithmic decrement). Experimental results and numerical predictions for the response of an aluminium catwalk subjected to walking loads have been compared. The damping of this light weight structure depends on the amplitude of vibration which complicates the tuning of a structural model. In the light of the results obtained it seems that the used walking load model is not appropriate as the predicted transient vibration values (TTVs) are much higher than the measured ones.
Resumo:
Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.