4 resultados para PLAN INTEGRAL DE DESARROLLO. PID - 2004-2019
em Universidad Politécnica de Madrid
Resumo:
La aportación al Plan Estratégico de Desarrollo Urbano de Makeni (Sierra Leona) desde la Infraestructura Verde pretende formalizar una estrategia de aproximación al territorio que ponga en valor la capacidad productiva de éste y permita compatibilizar la protección de las áreas de mayor valor con un desarrollo urbano y socioeconómico sostenible. La identificación de la Infraestructura Verde en el territorio no es otra cosa que la formalización de la “elección del sitio” que evidenciamos de importancia clave en HaB, identificando por un lado vulnerabilidades del terreno (áreas inundables, zonas de máxima pendientes y terrenos inadecuados) y por otros paisajes de interés dignos de ser protegidos por su gran valor cuyo diálogo, de igualdad entre las partes, evidenciarían las áreas de reserva óptimas para ser ocupadas. En un país con una elevada tasa de crecimiento demográfico en el que no existe la formación de la profesión de arquitecto ni ningún otro perfil relacionado con la Ordenación del Territorio, y considerándose una ciudad de tamaño medio de alto crecimiento en África que prevé pueda duplicar su población en aproximadamente 30 años, no queda otra cosa que anticiparse a una posible evolución de la ciudad sin rumbo fijo, leyendo sus potencialidades y fortalezas y trabajando a favor del territorio y no contra natura. La formalización de la Infraestructura Verde en el territorio de Makeni permite evidenciar una metodología de acercamiento a la práctica de la Ordenación Territorial que no es otra cosa que identificar y re-conocer el propio espacio y las relaciones que han imperado durante años (apartados de una visión holística del territorio y asumiendo que es una realidad en constante evolución) y pretende poder mostrar una herramienta que pueda ser replicable ya no solo en todo el territorio de Sierra Leona sino también en otros contextos africanos como sistema claro y evidenciable por la propia población; la agricultura como herramienta clave de custodia del territorio. La población ha entendido y rubricado (Foro de Makeni, Enero, 2014) la necesidad de marcar unas líneas estratégicas de Ordenación Territorial, que, en espera de la creciente población que habrá de albergar en horizontes cercanos, permitan controlar y pautar los futuros crecimientos de su ciudad. La estructura territorial de Makeni está conformada por los swaps, áreas inundables del sistema hídrico principal que formalizan una agricultura intensiva claramente vinculada al agua (wet lands). Estos swaps no pueden ser entendidos como los vacíos entre lo construido, sino como elementos estructurantes del territorio que, si bien hoy se evidencian como áreas degradadas y deterioradas, auguran y anticipan que la respuesta al planeamiento y la actitud frente a ellos pasa por poner el acento en estos espacios, puntos neurálgicos y potenciales de las futuras intervenciones. La Infraestructura verde urbana puede entenderse como un conjunto integrado y continuo de espacios, en general libres de edificación, de interés ambiental y cultural y las conexiones ecológicas y funcionales que los relacionan entre sí. Así estas conexiones funcionales no pretenden más que evidenciar y formalizar las futuras intervenciones en áreas degradadas de la ciudad ya consolidada para, a partir de ellas, generar sinergias detonantes de acciones que repercutan en el espacio público en pro de las relaciones sociales. Estos swaps podrían volver a ser verdaderos vectores de conexión de los corredores ecológicos que suponen los swaps y conformarse como verdaderas conexiones sociales, ecológicas y paisajísticas a escala de barrio, ciudad y territorio.
Resumo:
Proyecto de ordenación territorial y plan general de desarrollo del municipio San José de Cusmapa en el contexto del proyecto "Aldeas del Milenio"
Resumo:
El auge del "Internet de las Cosas" (IoT, "Internet of Things") y sus tecnologías asociadas han permitido su aplicación en diversos dominios de la aplicación, entre los que se encuentran la monitorización de ecosistemas forestales, la gestión de catástrofes y emergencias, la domótica, la automatización industrial, los servicios para ciudades inteligentes, la eficiencia energética de edificios, la detección de intrusos, la gestión de desastres y emergencias o la monitorización de señales corporales, entre muchas otras. La desventaja de una red IoT es que una vez desplegada, ésta queda desatendida, es decir queda sujeta, entre otras cosas, a condiciones climáticas cambiantes y expuestas a catástrofes naturales, fallos de software o hardware, o ataques maliciosos de terceros, por lo que se puede considerar que dichas redes son propensas a fallos. El principal requisito de los nodos constituyentes de una red IoT es que estos deben ser capaces de seguir funcionando a pesar de sufrir errores en el propio sistema. La capacidad de la red para recuperarse ante fallos internos y externos inesperados es lo que se conoce actualmente como "Resiliencia" de la red. Por tanto, a la hora de diseñar y desplegar aplicaciones o servicios para IoT, se espera que la red sea tolerante a fallos, que sea auto-configurable, auto-adaptable, auto-optimizable con respecto a nuevas condiciones que puedan aparecer durante su ejecución. Esto lleva al análisis de un problema fundamental en el estudio de las redes IoT, el problema de la "Conectividad". Se dice que una red está conectada si todo par de nodos en la red son capaces de encontrar al menos un camino de comunicación entre ambos. Sin embargo, la red puede desconectarse debido a varias razones, como que se agote la batería, que un nodo sea destruido, etc. Por tanto, se hace necesario gestionar la resiliencia de la red con el objeto de mantener la conectividad entre sus nodos, de tal manera que cada nodo IoT sea capaz de proveer servicios continuos, a otros nodos, a otras redes o, a otros servicios y aplicaciones. En este contexto, el objetivo principal de esta tesis doctoral se centra en el estudio del problema de conectividad IoT, más concretamente en el desarrollo de modelos para el análisis y gestión de la Resiliencia, llevado a la práctica a través de las redes WSN, con el fin de mejorar la capacidad la tolerancia a fallos de los nodos que componen la red. Este reto se aborda teniendo en cuenta dos enfoques distintos, por una parte, a diferencia de otro tipo de redes de dispositivos convencionales, los nodos en una red IoT son propensos a perder la conexión, debido a que se despliegan en entornos aislados, o en entornos con condiciones extremas; por otra parte, los nodos suelen ser recursos con bajas capacidades en términos de procesamiento, almacenamiento y batería, entre otros, por lo que requiere que el diseño de la gestión de su resiliencia sea ligero, distribuido y energéticamente eficiente. En este sentido, esta tesis desarrolla técnicas auto-adaptativas que permiten a una red IoT, desde la perspectiva del control de su topología, ser resiliente ante fallos en sus nodos. Para ello, se utilizan técnicas basadas en lógica difusa y técnicas de control proporcional, integral y derivativa (PID - "proportional-integral-derivative"), con el objeto de mejorar la conectividad de la red, teniendo en cuenta que el consumo de energía debe preservarse tanto como sea posible. De igual manera, se ha tenido en cuenta que el algoritmo de control debe ser distribuido debido a que, en general, los enfoques centralizados no suelen ser factibles a despliegues a gran escala. El presente trabajo de tesis implica varios retos que conciernen a la conectividad de red, entre los que se incluyen: la creación y el análisis de modelos matemáticos que describan la red, una propuesta de sistema de control auto-adaptativo en respuesta a fallos en los nodos, la optimización de los parámetros del sistema de control, la validación mediante una implementación siguiendo un enfoque de ingeniería del software y finalmente la evaluación en una aplicación real. Atendiendo a los retos anteriormente mencionados, el presente trabajo justifica, mediante una análisis matemático, la relación existente entre el "grado de un nodo" (definido como el número de nodos en la vecindad del nodo en cuestión) y la conectividad de la red, y prueba la eficacia de varios tipos de controladores que permiten ajustar la potencia de trasmisión de los nodos de red en respuesta a eventuales fallos, teniendo en cuenta el consumo de energía como parte de los objetivos de control. Así mismo, este trabajo realiza una evaluación y comparación con otros algoritmos representativos; en donde se demuestra que el enfoque desarrollado es más tolerante a fallos aleatorios en los nodos de la red, así como en su eficiencia energética. Adicionalmente, el uso de algoritmos bioinspirados ha permitido la optimización de los parámetros de control de redes dinámicas de gran tamaño. Con respecto a la implementación en un sistema real, se han integrado las propuestas de esta tesis en un modelo de programación OSGi ("Open Services Gateway Initiative") con el objeto de crear un middleware auto-adaptativo que mejore la gestión de la resiliencia, especialmente la reconfiguración en tiempo de ejecución de componentes software cuando se ha producido un fallo. Como conclusión, los resultados de esta tesis doctoral contribuyen a la investigación teórica y, a la aplicación práctica del control resiliente de la topología en redes distribuidas de gran tamaño. Los diseños y algoritmos presentados pueden ser vistos como una prueba novedosa de algunas técnicas para la próxima era de IoT. A continuación, se enuncian de forma resumida las principales contribuciones de esta tesis: (1) Se han analizado matemáticamente propiedades relacionadas con la conectividad de la red. Se estudia, por ejemplo, cómo varía la probabilidad de conexión de la red al modificar el alcance de comunicación de los nodos, así como cuál es el mínimo número de nodos que hay que añadir al sistema desconectado para su re-conexión. (2) Se han propuesto sistemas de control basados en lógica difusa para alcanzar el grado de los nodos deseado, manteniendo la conectividad completa de la red. Se han evaluado diferentes tipos de controladores basados en lógica difusa mediante simulaciones, y los resultados se han comparado con otros algoritmos representativos. (3) Se ha investigado más a fondo, dando un enfoque más simple y aplicable, el sistema de control de doble bucle, y sus parámetros de control se han optimizado empleando algoritmos heurísticos como el método de la entropía cruzada (CE, "Cross Entropy"), la optimización por enjambre de partículas (PSO, "Particle Swarm Optimization"), y la evolución diferencial (DE, "Differential Evolution"). (4) Se han evaluado mediante simulación, la mayoría de los diseños aquí presentados; además, parte de los trabajos se han implementado y validado en una aplicación real combinando técnicas de software auto-adaptativo, como por ejemplo las de una arquitectura orientada a servicios (SOA, "Service-Oriented Architecture"). ABSTRACT The advent of the Internet of Things (IoT) enables a tremendous number of applications, such as forest monitoring, disaster management, home automation, factory automation, smart city, etc. However, various kinds of unexpected disturbances may cause node failure in the IoT, for example battery depletion, software/hardware malfunction issues and malicious attacks. So, it can be considered that the IoT is prone to failure. The ability of the network to recover from unexpected internal and external failures is known as "resilience" of the network. Resilience usually serves as an important non-functional requirement when designing IoT, which can further be broken down into "self-*" properties, such as self-adaptive, self-healing, self-configuring, self-optimization, etc. One of the consequences that node failure brings to the IoT is that some nodes may be disconnected from others, such that they are not capable of providing continuous services for other nodes, networks, and applications. In this sense, the main objective of this dissertation focuses on the IoT connectivity problem. A network is regarded as connected if any pair of different nodes can communicate with each other either directly or via a limited number of intermediate nodes. More specifically, this thesis focuses on the development of models for analysis and management of resilience, implemented through the Wireless Sensor Networks (WSNs), which is a challenging task. On the one hand, unlike other conventional network devices, nodes in the IoT are more likely to be disconnected from each other due to their deployment in a hostile or isolated environment. On the other hand, nodes are resource-constrained in terms of limited processing capability, storage and battery capacity, which requires that the design of the resilience management for IoT has to be lightweight, distributed and energy-efficient. In this context, the thesis presents self-adaptive techniques for IoT, with the aim of making the IoT resilient against node failures from the network topology control point of view. The fuzzy-logic and proportional-integral-derivative (PID) control techniques are leveraged to improve the network connectivity of the IoT in response to node failures, meanwhile taking into consideration that energy consumption must be preserved as much as possible. The control algorithm itself is designed to be distributed, because the centralized approaches are usually not feasible in large scale IoT deployments. The thesis involves various aspects concerning network connectivity, including: creation and analysis of mathematical models describing the network, proposing self-adaptive control systems in response to node failures, control system parameter optimization, implementation using the software engineering approach, and evaluation in a real application. This thesis also justifies the relations between the "node degree" (the number of neighbor(s) of a node) and network connectivity through mathematic analysis, and proves the effectiveness of various types of controllers that can adjust power transmission of the IoT nodes in response to node failures. The controllers also take into consideration the energy consumption as part of the control goals. The evaluation is performed and comparison is made with other representative algorithms. The simulation results show that the proposals in this thesis can tolerate more random node failures and save more energy when compared with those representative algorithms. Additionally, the simulations demonstrate that the use of the bio-inspired algorithms allows optimizing the parameters of the controller. With respect to the implementation in a real system, the programming model called OSGi (Open Service Gateway Initiative) is integrated with the proposals in order to create a self-adaptive middleware, especially reconfiguring the software components at runtime when failures occur. The outcomes of this thesis contribute to theoretic research and practical applications of resilient topology control for large and distributed networks. The presented controller designs and optimization algorithms can be viewed as novel trials of the control and optimization techniques for the coming era of the IoT. The contributions of this thesis can be summarized as follows: (1) Mathematically, the fault-tolerant probability of a large-scale stochastic network is analyzed. It is studied how the probability of network connectivity depends on the communication range of the nodes, and what is the minimum number of neighbors to be added for network re-connection. (2) A fuzzy-logic control system is proposed, which obtains the desired node degree and in turn maintains the network connectivity when it is subject to node failures. There are different types of fuzzy-logic controllers evaluated by simulations, and the results demonstrate the improvement of fault-tolerant capability as compared to some other representative algorithms. (3) A simpler but more applicable approach, the two-loop control system is further investigated, and its control parameters are optimized by using some heuristic algorithms such as Cross Entropy (CE), Particle Swarm Optimization (PSO), and Differential Evolution (DE). (4) Most of the designs are evaluated by means of simulations, but part of the proposals are implemented and tested in a real-world application by combining the self-adaptive software technique and the control algorithms which are presented in this thesis.
Resumo:
Partiendo del estudio de la zona que discurre por la carretera E6 en su recorrido desde el municipio de Uddevala, al suroeste de Suecia hasta la frontera con Noruega se analizan las afecciones producidas en los asentamientos y el paisaje. El proyecto se estructura en tres escalas diferentes: regional, intermedia y local para entender la fuerte conexión entre las mismas. A nivel regional se analizan los tipos de paisaje por medio de un inventario utilizando el método PEBOSCA, dentro del programa Hábitat de las Naciones Unidas estudiando todos los recursos (físicos, biológicos, sociales, económicos, organizacionales... ) de una zona determianda ; y el método DAFO (en inglés SWOT)que se ocupa de las fuerzas y debilidades de la región. Se identifican los problemas más importantes, a saber, ampliar los servicios durante todo el año, mejorar la conectividad extendiendo el transporte público y carriles para bicicletas y mejorar la calidad del agua mitigando su efecto barrera. En un nivel intermedio, el proyecto se centra en la localidad de Hogdalsnäset por estar afectado por una falta de estructura urbana y por su proximidad a la frontera con Noruega. En el plano local se analiza la zona de Nordby presentando un plan alternativo de desarrollo a corto, medio y largo plazo. Por último, la autora concluye con la propuesta de construcción del "Parque del Humedal".