4 resultados para PIMIENTO
em Universidad Politécnica de Madrid
Resumo:
La mecanización integral del cultivo del pimiento de pimentón pasa por la mecanización de la recolección. En este trabajo se muestran los resultados obtenidos al ensayar dos máquinas de judía verde sobre el cultivo sembrado a 20 cm y a 40 cm. Los resultados muestran la posibilidad de recoger mecánicamente este cultivo aunque serán necesarios mayor número de ensayos.
Resumo:
Para mecanizar de forma integral el cultivo de pimientos de pimentón es necesario el desarrollo de la mecanización de la recolección. En este trabajo se analizan los resultados obtenidos al ensayar el sistema de desprendimiento por peinado del fruto utilizando dos cosechadoras de judía verde sobre el cultivo sembrado a 20 cm y a 40 cm entre líneas, con resultados positivos referidos tanto al porcentaje de frutos recogidos como a la capacidad de trabajo de la máquina.
Resumo:
Actualmente, la gestión de sistemas de Manejo Integrado de Plagas (MIP) en cultivos hortícolas tiene por objetivo priorizar los métodos de control no químicos en detrimento del consumo de plaguicidas, según recoge la directiva europea 2009/128/CE ‘Uso Sostenible de Plaguicidas’ (OJEC, 2009). El uso de agentes de biocontrol como alternativa a la aplicación de insecticidas es un elemento clave de los sistemas MIP por sus innegables ventajas ambientales que se utiliza ampliamente en nuestro país (Jacas y Urbaneja, 2008). En la región de Almería, donde se concentra el 65% de cultivo en invernadero de nuestro país (47.367 ha), MIP es la principal estrategia en pimiento (MAGRAMA, 2014), y comienza a serlo en otros cultivos como tomate o pepino. El cultivo de pepino, con 8.902 ha (MAGRAMA, 2013), tiene un protocolo semejante al pimiento (Robledo et al., 2009), donde la única especie de pulgón importante es Aphis gossypii Glover. Sin embargo, pese al continuo incremento de la superficie de cultivo agrícola bajo sistemas MIP, los daños originados por virosis siguen siendo notables. Algunos de los insectos presentes en los cultivos de hortícolas son importantes vectores de virus, como los pulgones, las moscas blancas o los trips, cuyo control resulta problemático debido a su elevada capacidad para transmitir virus vegetales incluso a una baja densidad de plaga (Holt et al., 2008; Jacas y Urbaneja, 2008). Las relaciones que se establecen entre los distintos agentes de un ecosistema son complejas y muy específicas. Se ha comprobado que, pese a que los enemigos naturales reducen de manera beneficiosa los niveles de plaga, su incorporación en los sistemas planta-insecto-virus puede desencadenar complicadas interacciones con efectos no deseables (Dicke y van Loon, 2000; Jeger et al., 2011). Así, los agentes de biocontrol también pueden inducir a que los insectos vectores modifiquen su comportamiento como respuesta al ataque y, con ello, el grado de dispersión y los patrones de distribución de las virosis que transmiten (Bailey et al., 1995; Weber et al., 1996; Hodge y Powell, 2008a; Hodge et al., 2011). Además, en ocasiones el control biológico por sí solo no es suficiente para controlar determinadas plagas (Medina et al., 2008). Entre los métodos que se pueden aplicar bajo sistemas MIP están las barreras físicas que limitan la entrada de plagas al interior de los invernaderos o interfieren con su movimiento, como pueden ser las mallas anti-insecto (Álvarez et al., 2014), las mallas fotoselectivas (Raviv y Antignus, 2004; Weintraub y Berlinger, 2004; Díaz y Fereres, 2007) y las mallas impregnadas en insecticida (Licciardi et al., 2008; Martin et al., 2014). Las mallas fotoselectivas reducen o bloquean casi por completo la transmisión de radiación UV, lo que interfiere con la visión de los insectos y dificulta o impide la localización del cultivo y su establecimiento en el mismo (Raviv y Antignus, 2004; Weintraub, 2009). Se ha comprobado cómo su uso puede controlar los pulgones y las virosis en cultivo de lechuga (Díaz et al., 2006; Legarrea et al., 2012a), así como la mosca blanca, los trips y los ácaros, y los virus que estos transmiten en otros cultivos (Costa y Robb, 1999; Antignus et al., 2001; Kumar y Poehling, 2006; Doukas y Payne, 2007a; Legarrea et al., 2010). Sin embargo, no se conoce perfectamente el modo de acción de estas barreras, puesto que existe un efecto directo sobre la plaga y otro indirecto mediado por la planta, cuya fisiología cambia al desarrollarse en ambientes con falta de radiación UV, y que podría afectar al ciclo biológico de los insectos fitófagos (Vänninen et al., 2010; Johansen et al., 2011). Del mismo modo, es necesario estudiar la compatibilidad de esta estrategia con los enemigos naturales de las plagas. Hasta la fecha, los estudios han evidenciado que los agentes de biocontrol pueden realizar su actividad bajo ambientes pobres en radiación UV (Chyzik et al., 2003; Chiel et al., 2006; Doukas y Payne, 2007b; Legarrea et al., 2012c). Otro método basado en barreras físicas son las mallas impregnadas con insecticidas, que se han usado tradicionalmente en la prevención de enfermedades humanas transmitidas por mosquitos (Martin et al., 2006). Su aplicación se ha ensayado en agricultura en ciertos cultivos al aire libre (Martin et al., 2010; Díaz et al., 2004), pero su utilidad en cultivos protegidos para prevenir la entrada de insectos vectores en invernadero todavía no ha sido investigada. Los aditivos se incorporan al tejido durante el proceso de extrusión de la fibra y se liberan lentamente actuando por contacto en el momento en que el insecto aterriza sobre la malla, con lo cual el riesgo medioambiental y para la salud humana es muy limitado. Los plaguicidas que se emplean habitualmente suelen ser piretroides (deltametrina o bifentrín), aunque también se ha ensayado dicofol (Martin et al., 2010) y alfa-cipermetrina (Martin et al., 2014). Un factor que resulta de vital importancia en este tipo de mallas es el tamaño del poro para facilitar una buena ventilación del cultivo, al tiempo que se evita la entrada de insectos de pequeño tamaño como las moscas blancas (Bethke y Paine, 1991; Muñoz et al., 1999). Asimismo, se plantea la necesidad de estudiar la compatibilidad de estas mallas con los enemigos naturales. Es por ello que en esta Tesis Doctoral se plantea la necesidad de evaluar nuevas mallas impregnadas que impidan el paso de insectos de pequeño tamaño al interior de los invernaderos, pero que a su vez mantengan un buen intercambio y circulación de aire a través del poro de la malla. Así, en la presente Tesis Doctoral, se han planteado los siguientes objetivos generales a desarrollar: 1. Estudiar el impacto de la presencia de parasitoides sobre el grado de dispersión y los patrones de distribución de pulgones y las virosis que éstos transmiten. 2. Conocer el efecto directo de ambientes pobres en radiación UV sobre el comportamiento de vuelo de plagas clave de hortícolas y sus enemigos naturales. 3. Evaluar el efecto directo de la radiación UV-A sobre el crecimiento poblacional de pulgones y mosca blanca, y sobre la fisiología de sus plantas hospederas, así como el efecto indirecto de la radiación UV-A en ambas plagas mediado por el crecimiento de dichas planta hospederas. 4. Caracterización de diversas mallas impregnadas en deltametrina y bifentrín con diferentes propiedades y selección de las óptimas para el control de pulgones, mosca blanca y sus virosis asociadas en condiciones de campo. Estudio de su compatibilidad con parasitoides. ABSTRACT Insect vectors of plant viruses are the main agents causing major economic losses in vegetable crops grown under protected environments. This Thesis focuses on the implementation of new alternatives to chemical control of insect vectors under Integrated Pest Management programs. In Spain, biological control is the main pest control strategy used in a large part of greenhouses where horticultural crops are grown. The first study aimed to increase our knowledge on how the presence of natural enemies such as Aphidius colemani Viereck may alter the dispersal of the aphid vector Aphis gossypii Glover (Chapter 4). In addition, it was investigated if the presence of this parasitoid affected the spread of aphid-transmitted viruses Cucumber mosaic virus (CMV, Cucumovirus) and Cucurbit aphid-borne yellows virus (CABYV, Polerovirus) infecting cucumber (Cucumis sativus L). SADIE methodology was used to study the distribution patterns of both the virus and its vector, and their degree of association. Results suggested that parasitoids promoted aphid dispersal in the short term, which enhanced CMV spread, though consequences of parasitism suggested potential benefits for disease control in the long term. Furthermore, A. colemani significantly limited the spread and incidence of the persistent virus CABYV in the long term. The flight activity of pests Myzus persicae (Sulzer), Bemisia tabaci (Gennadius) and Tuta absoluta (Meyrick), and natural enemies A. colemani and Sphaerophoria rueppellii (Weidemann) under UV-deficient environments was studied under field conditions (Chapter 5). One-chamber tunnels were covered with cladding materials with different UV transmittance properties. Inside each tunnel, insects were released from tubes placed in a platform suspended from the ceiling. Specific targets were located at different distances from the platform. The ability of aphids and whiteflies to reach their targets was diminished under UV-absorbing barriers, suggesting a reduction of vector activity under this type of nets. Fewer aphids reached distant traps under UV-absorbing nets, and significantly more aphids could fly to the end of the tunnels covered with non-UV blocking materials. Unlike aphids, differences in B. tabaci captures were mainly found in the closest targets. The oviposition of lepidopteran T. absoluta was also negatively affected by a UV-absorbing cover. The photoselective barriers were compatible with parasitism and oviposition of biocontrol agents. Apart from the direct response of insects to UV radiation, plant-mediated effects influencing insect performance were investigated (Chapter 6). The impact of UV-A radiation on the performance of aphid M. persicae and whitefly B. tabaci, and growth and leaf physiology of host plants pepper and eggplant was studied under glasshouse conditions. Plants were grown inside cages covered by transparent and UV-A-opaque plastic films. Plant growth and insect fitness were monitored. Leaves were harvested for chemical analysis. Pepper plants responded directly to UV-A by producing shorter stems whilst UV-A did not affect the leaf area of either species. UV-A-treated peppers had higher content of secondary metabolites, soluble carbohydrates, free amino acids and proteins. Such changes in tissue chemistry indirectly promoted aphid performance. For eggplants, chlorophyll and carotenoid levels decreased with supplemental UVA but phenolics were not affected. Exposure to supplemental UV-A had a detrimental effect on whitefly development, fecundity and fertility presumably not mediated by plant cues, as compounds implied in pest nutrition were unaltered. Lastly, the efficacy of a wide range of Long Lasting Insecticide Treated Nets (LLITNs) was studied under laboratory and field conditions. This strategy aimed to prevent aphids and whiteflies to enter the greenhouse by determining the optimum mesh size (Chapter 7). This new approach is based on slow release deltamethrin- and bifenthrin-treated nets with large hole sizes that allow improved ventilation of greenhouses. All LLITNs produced high mortality of M. persicae and A. gossypii although their efficacy decreased over time with sun exposure. It was necessary a net with hole size of 0.29 mm2 to exclude B. tabaci under laboratory conditions. The feasibility of two selected nets was studied in the field under a high insect infestation pressure in the presence of CMV- and CABYV-infected cucumber plants. Besides, the compatibility of parasitoid A. colemani with bifenthrin-treated nets was studied in parallel field experiments. Both nets effectively blocked the invasion of aphids and reduced the incidence of both viruses, however they failed to exclude whiteflies. We found that our LLITNs were compatible with parasitoid A. colemani. As shown, the role of natural enemies has to be taken into account regarding the dispersal of insect vectors and subsequent spread of plant viruses. The additional benefits of novel physicochemical barriers, such as photoselective and insecticide-impregnated nets, need to be considered in Integrated Pest Management programs of vegetable crops grown under protected environments.
Resumo:
Los patógenos han desarrollado estrategias para sobrevivir en su entorno, infectar a sus huéspedes, multiplicarse dentro de estos y posteriormente transmitirse a otros huéspedes. Todos estos componentes hacen parte de la eficacia biológica de los patógenos, y les permiten ser los causantes de enfermedades infecciosas tanto en hombres y animales, como en plantas. El proceso de infección produce efectos negativos en la eficacia biológica del huésped y la gravedad de los efectos, dependerá de la virulencia del patógeno. Por su parte, el huésped ha desarrollado mecanismos de respuesta en contra del patógeno, tales como la resistencia, por la que reduce la multiplicación del patógeno, o la tolerancia, por la que disminuye el efecto negativo de la infección. Estas respuestas del huésped a la infección producen efectos negativos en la eficacia biológica del patógeno, actuando como una presión selectiva sobre su población. Si la presión selectiva sobre el patógeno varía según el huésped, se predice que un mismo patógeno no podrá aumentar su eficacia biológica en distintos huéspedes y estará más adaptado a un huésped y menos a otro, disminuyendo su gama de huéspedes. Esto supone que la adaptación de un patógeno a distintos huéspedes estará a menudo dificultada por compromisos (trade-off) en diferentes componentes de la eficacia biológica del patógeno. Hasta el momento, la evidencia de compromisos de la adaptación del patógeno a distintos huéspedes no es muy abundante, en lo que se respecta a los virus de plantas. En las últimas décadas, se ha descrito un aumento en la incidencia de virus nuevos o previamente descritos que producen enfermedades infecciosas con mayor gravedad y/o diferente patogenicidad, como la infección de huéspedes previamente resistentes. Esto se conoce como la emergencia de enfermedades infecciosas y está causada por patógenos emergentes, que proceden de un huésped reservorio donde se encuentran adaptados. Los huéspedes que actúan como reservorios pueden ser plantas silvestres, que a menudo presentan pocos síntomas o muy leves a pesar de estar infectados con diferentes virus, y asimismo se encuentran en ecosistemas con ninguna o poca intervención humana. El estudio de los factores ecológicos y biológicos que actúan en el proceso de la emergencia de enfermedades infecciosas, ayudará a entender sus causas para crear estrategias de prevención y control. Los virus son los principales patógenos causales de la emergencia de enfermedades infecciosas en humanos, animales y plantas y un buen modelo para entender los procesos de la emergencia. Asimismo, las plantas a diferencia de los animales, son huéspedes fáciles de manipular y los virus que las afectan, más seguros para el trabajo en laboratorio que los virus de humanos y animales, otros modelos también usados en la investigación. Por lo tanto, la interacción virus – planta es un buen modelo experimental para el estudio de la emergencia de enfermedades infecciosas. El estudio de la emergencia de virus en plantas tiene también un interés particular, debido a que los virus pueden ocasionar pérdidas económicas en los cultivos agrícolas y poner en riesgo la durabilidad de la resistencia de plantas mejoradas, lo que supone un riesgo en la seguridad alimentaria con impactos importantes en la sociedad, comparables con las enfermedades infecciosas de humanos y animales domésticos. Para que un virus se convierta en un patógeno emergente debe primero saltar desde su huésped reservorio a un nuevo huésped, segundo adaptarse al nuevo huésped hasta que la infección dentro de la población de éste se vuelva independiente del reservorio y finalmente debe cambiar su epidemiología. En este estudio, se escogió la emergencia del virus del mosaico del pepino dulce (PepMV) en el tomate, como modelo experimental para estudiar la emergencia de un virus en una nueva especie de huésped, así como las infecciones de distintos genotipos del virus del moteado atenuado del pimiento (PMMoV) en pimiento, para estudiar la emergencia de un virus que aumenta su patogenicidad en un huésped previamente resistente. El estudio de ambos patosistemas nos permitió ampliar el conocimiento sobre los factores ecológicos y evolutivos en las dos primeras fases de la emergencia de enfermedades virales en plantas. El PepMV es un patógeno emergente en cultivos de tomate (Solanum lycopersicum) a nivel mundial, que se describió primero en 1980 infectando pepino dulce (Solanum muricatum L.) en Perú, y casi una década después causando una epidemia en cultivos de tomate en Holanda. La introducción a Europa posiblemente fue a través de semillas infectadas de tomate procedentes de Perú, y desde entonces se han descrito nuevos aislados que se agrupan en cuatro cepas (EU, LP, CH2, US1) que infectan a tomate. Sin embargo, el proceso de su emergencia desde pepino dulce hasta tomate es un interrogante de gran interés, porque es uno de los virus emergentes más recientes y de gran importancia económica. Para la emergencia de PepMV en tomate, se recolectaron muestras de tomate silvestre procedentes del sur de Perú, se analizó la presencia y diversidad de aislados de PepMV y se caracterizaron tanto biológicamente (gama de huéspedes), como genéticamente (secuencias genomicas). Se han descrito en diferentes regiones del mundo aislados de PMMoV que han adquirido la capacidad de infectar variedades previamente resistentes de pimiento (Capsicum spp), es decir, un típico caso de emergencia de virus que implica la ampliación de su gama de huéspedes y un aumento de patogenicidad. Esto tiene gran interés, ya que compromete el uso de variedades resistentes obtenidas por mejora genética, que es la forma de control de virus más eficaz que existe. Para estudiar la emergencia de genotipos altamente patogénicos de PMMoV, se analizaron clones biológicos de PMMoV procedentes de aislados de campo cuya patogenicidad era conocida (P1,2) y por mutagénesis se les aumentó la patogenicidad (P1,2,3 y P1,2,3,4), introduciendo las mutaciones descritas como responsables de estos fenotipos. Se analizó si el aumento de la patogenicidad conlleva un compromiso en la eficacia biológica de los genotipos de PMMoV. Para ello se evaluaron diferentes componentes de la eficacia biológica del virus en diferentes huéspedes con distintos alelos de resistencia. Los resultados de esta tesis demuestran: i). El potencial de las plantas silvestres como reservorios de virus emergentes, en este caso tomates silvestres del sur de Perú, así como la existencia en estas plantas de aislados de PepMV de una nueva cepa no descrita que llamamos PES. ii) El aumento de la gama de huéspedes no es una condición estricta para la emergencia de los virus de plantas. iii) La adaptación es el mecanismo más probable en la emergencia de PepMV en tomate cultivado. iv) El aumento de la patogenicidad tiene un efecto pleiotrópico en distintos componentes de la eficacia biológica, así mismo el signo y magnitud de este efecto dependerá del genotipo del virus, del huésped y de la interacción de estos factores. ABSTRACT host Pathogens have evolved strategies to survive in their environment, infecting their hosts, multiplying inside them and being transmitted to other hosts. All of these components form part of the pathogen fitness, and allow them to be the cause of infectious diseases in humans, animals, and plants. The infection process produces negative effects on the host fitness and the effects severity will depend on the pathogen virulence. On the other hand, hosts have developed response mechanisms against pathogens such as resistance, which reduces the growth of pathogens, or tolerance, which decreases the negative effects of infection. T he se responses of s to infection cause negative effects on the pathogen fitness, acting as a selective pressure on its population. If the selective pressures on pathogens va ry according to the host s , probably one pathogen cannot increase its fitness in different hosts and will be more adapted to one host and less to another, decreasing its host range. This means that the adaptation of one pathogen to different hosts , will be often limited by different trade - off components of biological effectiveness of pathogen. Nowadays , trade - off evidence of pathogen adaptation to different hosts is not extensive, in relation with plant viruses. In last decades, an increase in the incidence of new or previously detected viruses has been described, causing infectious diseases with increased severity and/or different pathogenicity, such as the hosts infection previously resistants. This is known as the emergence of infectious diseases and is caused by emerging pathogens that come from a reservoir host where they are adapted. The hosts which act as reservoirs can be wild plants, that often have few symptoms or very mild , despite of being infected with different viruses, and being found in ecosystems with little or any human intervention. The study of ecological and biological factors , acting in the process of the infectious diseases emergence will help to understand its causes to create strategies for its prevention and control. Viruses are the main causative pathogens of the infectious diseases emergence in humans, animals and plants, and a good model to understand the emergency processes. Likewise, plants in contrast to animals are easy host to handle and viruses that affect them, safer for laboratory work than viruses of humans and animals, another models used in research. Therefore, the interaction plant-virus is a good experimental model for the study of the infectious diseases emergence. The study of virus emergence in plants also has a particular interest, because the viruses can cause economic losses in agricultural crops and threaten the resistance durability of improved plants, it suppose a risk for food security with significant impacts on society, comparable with infectious diseases of humans and domestic animals. To become an emerging pathogen, a virus must jump first from its reservoir host to a new host, then adapt to a new host until the infection within the population becomes independent from the reservoir, and finally must change its epidemiology. In this study, the emergence of pepino mosaic virus (PepMV) in tomato, was selected as experimental model to study the emergence of a virus in a new host specie, as well as the infections of different genotypes of pepper mild mottle virus (PMMoV) in pepper, to study the emergence of a virus that increases its pathogenicity in a previously resistant host. The study of both Pathosystems increased our knowledge about the ecological and evolutionary factors in the two first phases of the emergence of viral diseases in plants. The PepMV is an emerging pathogen in tomato (Solanum lycopersicum L.) in the world, which was first described in 1980 by infecting pepino (Solanum muricatum L.) in Peru, and almost after a decade caused an epidemic in tomato crops in Netherlands. The introduction to Europe was possibly through infected tomato seeds from Peru, and from then have been described new isolates that are grouped in four strains (EU, LP, CH2, US1) that infect tomato. However, the process of its emergence from pepino up tomato is a very interesting question, because it is one of the newest emerging viruses and economically important. For the PepMV emergence in tomato, wild tomato samples from southern Peru were collected, and the presence and diversity of PepMV isolates were analyzed and characterized at biological (host range) and genetics (genomic sequences) levels. Isolates from PMMoV have been described in different world regions which have acquired the ability to infect pepper varieties that were previously resistants (Capsicum spp), it means, a typical case of virus emergence which involves the host range extension and an increased pathogenicity. This is of great interest due to involve the use of resistant varieties obtained by breeding, which is the most effective way to control virus. To study the emergence of highly pathogenic genotypes of PMMoV, biological clones from field isolates whose pathogenicity was known were analyzed (P1,2) and by mutagenesis we increased its pathogenicity (P1,2,3 and P1,2, 3,4), introducing the mutations described as responsible for these phenotypes. We analyzed whether the increased pathogenicity involves a trade-off in fitness of PMMoV genotypes. For this aim, different components of virus fitness in different hosts with several resistance alleles were evaluated. The results of this thesis show: i). The potential of wild plants as reservoirs of emerging viruses, in this case wild tomatoes in southern Peru, and the existence in these plants of PepMV isolates of a new undescribed strain that we call PES. ii) The host range expansion is not a strict condition for the plant virus emergence. iii) The adaptation is the most likely mechanism in the PepMV emergence in cultivated tomato. iv) The increased pathogenicity has a pleiotropic effect on several fitness components, besides the sign and magnitude of this effect depends on the virus genotype, the host and the interaction of both.