36 resultados para PHOTOVOLTAIC PERFORMANCE
em Universidad Politécnica de Madrid
Resumo:
In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the dome-shaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel-Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.
Resumo:
With the final goal of integrating III-V materials to silicon for tandem solar cells, the influence of the metal-organic vapor phase epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell device. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. The effect of the formation of the emitter by phosphorus diffusion has also been evaluated.
Resumo:
With the final goal of integrating III-V materials on silicon substrates for tandem solar cells, the influence of the Metal-Organic Vapor Phase Epitaxy (MOVPE) environment on the minority carrier properties of silicon wafers has been evaluated. These properties will essentially determine the photovoltaic performance of the bottom cell in a III-V-on-Si tandem solar cell. A comparison of the base minority carrier lifetimes obtained for different thermal processes carried out in a MOVPE reactor on Czochralski silicon wafers has been carried out. An important degradation of minority carrier lifetime during the surface preparation (i.e. H2 anneal) has been observed. Three different mechanisms have been proposed for explaining this behavior: 1) the introduction of extrinsic impurities coming from the reactor; 2) the activation of intrinsic lifetime killing impurities coming from the wafer itself; and finally, 3) the formation of crystal defects, which eventually become recombination centers. The effect of the emitter formation by phosphorus diffusion has also been evaluated. In this sense, it has been reported that lifetime can be recovered during the emitter formation either by the effect of the P on extracting impurities, or by the role of the atomic hydrogen on passivating the defects.
Resumo:
Anew, simple, and quick-calculationmethodology to obtain a solar panel model, based on the manufacturers’ datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.
Resumo:
At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.
Resumo:
In this paper, a methodology for the integral energy performance characterization (thermal, daylighting and electrical behavior) of semi-transparent photovoltaic modules (STPV) under real operation conditions is presented. An outdoor testing facility to analyze simultaneously thermal, luminous and electrical performance of the devices has been designed, constructed and validated. The system, composed of three independent measurement subsystems, has been operated in Madrid with four prototypes of a-Si STPV modules, each one corresponding to a specific degree of transparency. The extensive experimental campaign, continued for a whole year rotating the modules under test, has validated the reliability of the testing facility under varying environmental conditions. The thermal analyses show that both the solar protection and insulating properties of the laminated prototypes are lower than those achieved by a reference glazing whose characteristics are in accordance with the Spanish Technical Building Code. Daylighting analysis shows that STPV elements have an important lighting energy saving potential that could be exploited through their integration with strategies focused to reduce illuminance values in sunny conditions. Finally, the electrical tests show that the degree of transparency is not the most determining factor that affects the conversion efficiency.
Resumo:
The main objective of this paper is to review the state of the art of residential PV systems in France and Belgium. This is done analyzing the operational data of 10650 PV systems (9657 located in France and 993 in Belgium). Three main questions are posed. How much energy do they produce? What level of performance is associated to their production? Which are the key parameters that most influence their quality? During the year 2010, the PV systems in France have produced a mean annual energy of 1163 kWh/kWp in France and 852 kWh/kWp in Belgium. As a whole, the orientation of PV generators causes energy productions to be some 7% inferior to optimally oriented PV systems. The mean Performance Ratio is 76% in France and 78% in Belgium, and the mean Performance Index is 85% in both countries. On average, the real power of the PV modules falls 4.9% below its corresponding nominal power announced on the manufacturer?s datasheet. A brief analysis by PV modules technology has lead to relevant observations about two technologies in particular. On the one hand, the PV systems equipped with Heterojunction with Intrinsic. Thin layer (HIT) modules show performances higher than average. On the other hand, the systems equipped with Copper Indium (di)Selenide (CIS) modules show a real power that is 16 % lower than their nominal value.
Resumo:
Metal grid lines are a vital element in multijunction solar cells in order to take out from the cell the generated photocurrent. Nevertheless all this implies certain shadowing factor and thus certain reflectivity on cells surface that lowers its light absorption. This reflectivity produces a loss in electrical efficiency and thus a loss in global energy production for CPV systems. We present here an optical design for recovering this portion of reflected light, and thus leading to a system efficiency increase. This new design is based on an external confinement cavity, an optical element able to redirect the light reflected by the cell towards its surface again. It has been possible thanks to the recent invention of the advanced Köhler concentrators by LPI, likely to integrate one of these cavities easily. We have proven the excellent performance of these cavities integrated in this kind of CPV modules offering outstanding results: 33.2% module electrical efficiency @Tcell=25ºC and relative efficiency and Isc gains of over 6%.
Resumo:
Getting a lower energy cost has always been a challenge for concentrated photovoltaic. The FK concentrator enhances the performance (efficiency, acceptance angle and manufacturing tolerances) of the conventional CPV system based on a Fresnel primary stage and a secondary lens, while keeping its simplicity and potentially low‐cost manufacturing. At the same time F‐XTP (Fresnel lens+reflective prism), at the first glance has better cost potential but significantly higher sensitivity to manufacturing errors. This work presents comparison of these two approaches applied to two main technologies of Fresnel lens production (PMMA and Silicone on Glass) and effect of standard deformations that occur under real operation conditions
Resumo:
Concentration photovoltaic (CPV) systems might produce quite uneven irradiance distributions (both on their level and on their spectral distribution) on the solar cell. This effect can be even more evident when the CPV system is slightly off-axis, since they are often designed to assure good uniformity only at normal incidence. The non-uniformities both in absolute irradiance and spectral content produced by the CPV systems, can originate electrical losses in multi-junction solar cells (MJSC). This works is focused on the integration of ray-tracing methods for simulating the irradiance and spectrum maps produced by different optic systems throughout the solar cell surface, with a 3D fully distributed circuit model which simulates the electrical behavior of a state-of-the-art triple-junction solar cell under the different light distributions obtained with ray-tracing. In this study four different CPV system (SILO, XTP, RTP, and FK) comprising Fresnel lenses concentrating sunlight onto the same solar cell are modeled when working on-axis and 0.6 degrees off-axis. In this study the impact of non-uniformities on a CPV system behavior is revealed. The FK outperforms other Fresnel-based CPV systems in both on-axis and off-axis conditions.
Resumo:
The dome-shaped Fresnel-Köhler concentrator is a novel optical design for photovoltaic applications. It is based on two previous successful CPV optical designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. This optical concentrator will be able to achieve large concentration factors, high tolerance (i.e. acceptance angle) and high optical efficiency, three key issues when dealing with photovoltaic applications. Besides, its irradiance is distributed on the cell surface in a very even way. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, on-axis optical efficiency over 85% and good irradiance uniformity on the cell provided by Köhler integration. Furthermore, due to its high tolerance, we will present the dome-shaped Fresnel-Köhler concentrator as a cost-effective CPV optical design. All this makes this concentrator superior to other conventional competitors in the current market.
Resumo:
Implementation of a high-efficiency quantum dot intermediate-band solar cell (QD-IBSC) must accompany a sufficient photocurrent generation via IB states. The demonstration of a QD-IBSC is presently undergoing two stages. The first is to develop a technology to fabricate high-density QD stacks or a superlattice of low defect density placed within the active region of a p-i-n SC, and the second is to realize half-filled IB states to maximize the photocurrent generation by two-step absorption of sub-bandgap photons. For this, we have investigated the effect of light concentration on the characteristics of QDSCs comprised of multi-layer stacks of self-organized InAs/GaNAs QDs grown with and without impurity doping in molecular beam epitaxy.
Resumo:
- PV and HCPV compete in the utility market - PV cost reduction has been dramatic through volume - A complete off-the-shelf optics solution by Evonik and LPI - Based on the best-in-class design: The FK concentrator
Resumo:
The solaR package allows for reproducible research both for photovoltaics (PV) systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems. It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems. Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.
Resumo:
The Concentrated Photovoltaics (CPV) promise relies upon the use of high-efficiency triple-junction solar cells (with proven efficiencies of over 44%) and upon high-performance optics that allow for high concentration concurrent with relaxed manufacturing tolerances (all key elements for low-cost mass production). Additionally, uniform illumination is highly desirable for efficiency and reliability reasons. All of these features have to be achieved with inexpensive optics containing only a few (in general no more than 2) optical elements. In this paper we show that the degrees of freedom using free-forms allow the introduction of multiple functionalities required for CPV with just 2 optical elements, one of which is a Fresnel lens.