7 resultados para PEROVSKITE MANGANITES
em Universidad Politécnica de Madrid
Resumo:
The electronic structure and properties of the orthorhombic phase of the CH 3 NH 3 PbI 3 perovskite are computed with density functional theory. The structure, optimized using a van der Waals functional, reproduces closely the unit cell volume. The experimental band gap is reproduced accurately by combining spin-orbit effects and a hybrid functional in which the fraction of exact exchange is tuned self-consistently to the optical dielectric constant. Including spin-orbit coupling strongly reduces the anisotropy of the effective mass tensor, predicting a low electron effective mass in all crystal directions. The computed binding energy of the unrelaxed exciton agrees with experimental data, and the values found imply a fast exciton dissociation at ambient temperature. Also polaron masses for the separated carriers are estimated. The values of all these parameters agree with recent indications that fast dynamics and large carrier diffusion lengths are key in the high photovoltaic efficiencies shown by these materials.
Resumo:
The excitons in the orthorhombic phase of the perovskite CH3NH3PbI3 are studied using the effective mass approximation. The electron–hole interaction is screened by a distance-dependent dielectric function, as described by the Haken potential or the Pollmann–Büttner potential. The energy spectrum and the eigenfunctions are calculated for both cases. The results show that the Pollmann–Büttner model, using the corresponding parameters obtained from ab initio calculations, provides better agreement with the experimental results.
Resumo:
The obtaining of multiferroicBiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solidstate reactivity of the Bi2O3–Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solidstatesynthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.
Resumo:
The sintering behaviour and the microstructural evolution of W6+, Nb5+ and Ti4+iron-substituted BiFeO3 ceramics have been analyzed. The obtained results show that W6+ and Nb5+ ions interact with the secondary phases usually present in these materials, thus altering the solid state formation of the BiFeO3 phase. In contrast, Ti4+ ions incorporate into the perovskite structure, leading to an exceptionally low proportion of secondary phases. In addition to this, BiFe0.95Ti0.05O3 materials present a dense microstructure with submicronic and nanostructured grains, clearly smaller than those in the undoped materials.
Resumo:
The obtaining of multiferroic BiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solid state reactivity of the Bi2O3?Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solid state synthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.
Resumo:
Quaternary-ordered double perovskite A2MM’O6 (M=Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M’ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.
Resumo:
The pure and cerium doped sodium bismuth titanate inorganic powders were synthesized by solid state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. At 1200 ºC, the 5% of cerium doped NBT compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated to 1350 ºC, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermo gravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work we present our recent results on the synthesis and characterization of Ce doped sodium bismuth titanate materials.