16 resultados para PBWO4 CRYSTALS
em Universidad Politécnica de Madrid
Resumo:
Liquid crystal properties make them useful for the development of security devices in applications of authentication and detection of fakes. Induced orientation of liquid crystal molecules and birefringence are the two main properties used in security devices. Employing liquid crystal and dichroic colorants, we have developed devices that show, with the aid of a polarizer, multiple images on each side of the device. Rubbed polyimide is used as alignment layer on each substrate of the LC cell. By rubbing the polyimide in different directions in each substrate it is possible to create any kind of symbols, drawings or motifs with a greyscale; the more complex the created device is, the more difficult is to fake it. To identify the motifs it is necessary to use polarized light. Depending on whether the polarizer is located in front of the LC cell or behind it, different motifs from one or the other substrate are shown. The effect arises from the dopant colour dye added to the liquid crystal, the induced orientation and the twist structure. In practice, a grazing reflection on a dielectric surface is polarized enough to see the effect. Any LC flat panel display can obviously be used as backlight as well.
Resumo:
The mechanical response under compression of LiF single crystal micropillars oriented in the [111] direction was studied. Micropillars of different diameter (in the range 1–5 lm) were obtained by etching the matrix in directionally-solidified NaCl–LiF and KCl–LiF eutectic compounds. Selected micropillars were exposed to high-energy Ga+ ions to ascertain the effect of ion irradiation on the mechanical response. Ion irradiation led to an increase of approximately 30% in the yield strength and the maximum compressive strength but no effect of the micropillar diameter on flow stress was found in either the as-grown or the ion irradiated pillars. The dominant deformation micromechanisms were analyzed by means of crystal plasticity finite element simulations of the compression test, which explained the strong effect of micropillar misorientation on the mechanical response. Finally, the lack of size effect on the flow stress was discussed to the light of previous studies in LiF and other materials which show high lattice resistance to dislocation motion.
Resumo:
Lenticular array products have experienced a growing interest in the last decade due to the very wide range of applications they can cover. Indeed, this kind of lenses can create different effects on a viewing image such as 3D, flips, zoom, etc. In this sense, lenticular based on liquid crystals (LC) technology is being developed with the aim of tuning the lens profiles simply by controlling the birefringence electrically. In this work, a LC lenticular lens array has been proposed to mimic a GRIN lenticular lens array but adding the capability of tuning their lens profiles. Comb control electrodes have been designed as pattern masks for the ITO on the upper substrate. Suitable high resistivity layers have been chosen to be deposited on the control electrode generating an electric field gradient between teeth of the same electrode. Test measurements have allowed us to demonstrate that values of phase retardations and focal lengths, for an optimal driving waveform, are fairly in agreement. In addition, results of focusing power of tuneable lenses were compared to those of conventional lenses. The behaviour of both kinds of lenses has revealed to be mutually similar for focusing collimated light and for refracting images.
Resumo:
Liquid crystal devices are being used in many non-display applications in order to construct small devices controlled by low voltage electronics without mechanical components. In this work, we present a novel liquid crystal device for laser beam steering. In this device the orientation of the liquid crystal molecules can be controlled. A change in the liquid crystal orientation results in a change of the refractive index. When a laser beam passes through the device, the beam will be deviated (Fig.1) and the device works a prism. The main difference between this device and a prism is that in the device the orientation profile of the liquid crystal molecules can be modified so that the laser beam can be deviated a required angle: the device is tuneable.
Resumo:
A new type of photonic logic, based on the use of nematic liquid crystals is proposed. The system takes advantage of the refractive-index changes induced by laser beams. Examples of AND, OR and NOR functions are presented.
Resumo:
A method of unpolarized laser pulses shaping is reported. The basis of the method is the use of an hybrid optical bistable device with nematic liquid-crystals, similar to the one previously reported by us. A sample of the input light constrols, by an asymmetrical electronic comparator, a 1 x 2 electro-optical total switch. The output pulses are reshaped and maintain the same polarization properties as the input light. From triangular input light signals, symmetriacl and asymmetrical output pulses have been obtained. The minimum pulse width achieved was 0.1 msec. A representation of the output versus input light signals gives an hysteresys cycle in the asymmetrical case.
Resumo:
In this communication we report a new method for deflecting a laser beam with liquid crystals cells. In order to improve previous response times of these cells, we use a wedge structure with twisted orientation.
Resumo:
In this paper we report the experimental results obtained when an He-Ne laser beam crosses an MBBA homeotropic sandwich structure and is modulated by the influence of another laser beam, in our case an Ar+ laser, crossing through the same region. We extend some results previously reported by us1 2 concerning the influence of the ratio of the diameters of the laser beams on the modulation characteristics. A theoretical model, based on the one reported in Ref6 , shows good agreement with the experimental results. If the Ar+ laser is intensity chopped, the resulting He-Ne diffracted image is also intensity modulated. The highest frequency observed has been 500 p. p. s.
Resumo:
In this paper we report a new metod for optical switching based on the magneto-optical properties of liquid crystal materials. In order to improve previous response times, we used a wedge structure.
Resumo:
In this paper we report a new method of laser pulse shaping by the use of liquid crystals as non linear materials. The basis of this method is similar to the one reported by us for an hybrid optical bistable device, but with a different electronic circuitry and feedback.
Resumo:
Antiferroelectric liquid crystals are attractive for microdisplay applications, because of their fast switching and wide viewing angle; however the pretransitional effect reduces the contrast of the display. As a promising alternative orthoconic antiferroelectric liquid crystals (OAFLC) with a cone angle of 90º provide a good dark state between crossed polarized independently of the cell rotation. These materials are properly surface stabilized in 1.5μm thick cell required for π retardation, which limits their use in display applications. In this work, new OAFLC mixtures have been surface stabilized in thick cells. This achievement may open a new area of OAFLC applications in photonic devices.
Resumo:
In this work we propose a novel cholesteric liquid crystal beam steering device based on the Kerr effect. The first version of the device consists of two ITO coated glass plates, with intentionally prepared electrodes, assembled together with a thickness gradient between both sides of the device. One side of the cell has two substrates at direct contact; the other side has separated substrates to form the wedge. The cell was filled with a cholesteric liquid crystal. The liquid crystal material is an innovative mixture called 1892E with extremely low viscosity doped with a ZLI chiral nematogen. The proposed beam steering device based on cholesteric liquid crystals has great potential for many photonic applications. Results describing the performance of the device and the properties of the selected liquid crystals are presented.
Resumo:
Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.
Resumo:
Canberra, the ?Bush Capital? of Australia, was a project torn between ambition and avoidance. For fear of upsetting Sydney or Melbourne, its location avoided larger territorial aspirations but its crystalline winning scheme was bold, and contained the promise of enlightened irradiation. Postwar Canberra, like so many other cities at the time, let its future be designed by Cold-War traffic engineers, who confidently turned dream into sprawl and highways. Although Canberra s mix of ambition and banality, of symbolic desire and structural normalcy, may be precisely what a good city is all about, it probably contains these in defective proportions. What Canberra needs is just a little more of itself, in different amounts, to a higher pressure from the inside. We can easily imagine the multiplying of the original Griffin plan, adding the city onto itself, organizing the recent sprawl with new nodes and public transport with more urban streets between them. With this reclaimed space for higher density, Canberra can then grow from the inside instead of sprawling away, lowering its expenditure on transport and its carbon and sustainability footprint. The new nodes will be denser and allow for variety and change in its programmatic design. Minor but detailed changes in street and public space design will also allow for easier multi-species (people, animals?) access to urban and natural resources. Video brief of the project: http://vimeo.com/45799435
Resumo:
1D and 2D patterning of uncharged micro- and nanoparticles via dielectrophoretic forces on photovoltaic z-cut Fe:LiNbO3 have been investigated for the first time. The technique has been successfully applied with dielectric micro-particles of CaCO3 (diameter d = 1-3 μm) and metal nanoparticles of Al (d = 70 nm). At difference with previous experiments in x- and y-cut, the obtained patterns locally reproduce the light distribution with high fidelity. A simple model is provided to analyse the trapping process. The results show the remarkably good capabilities of this geometry for high quality 2D light-induced dielectrophoretic patterning overcoming the important limitations presented by previous configurations.