6 resultados para P System
em Universidad Politécnica de Madrid
Resumo:
In this work, we propose a variant of P system based on the rewriting of string-objects by means of evolutionary rules. The membrane structure of such a P system seems to be a very natural tool for simulating the filters in accepting networks of evolutionary processors with filtered connections. We discuss an informal construction supporting this simulation. A detailed proof is to be considered in an extended version of this work.
Resumo:
La característica fundamental de la Computación Natural se basa en el empleo de conceptos, principios y mecanismos del funcionamiento de la Naturaleza. La Computación Natural -y dentro de ésta, la Computación de Membranas- surge como una posible alternativa a la computación clásica y como resultado de la búsqueda de nuevos modelos de computación que puedan superar las limitaciones presentes en los modelos convencionales. En concreto, la Computación de Membranas se originó como un intento de formular un nuevo modelo computacional inspirado en la estructura y el funcionamiento de las células biológicas: los sistemas basados en este modelo constan de una estructura de membranas que actúan a la vez como separadores y como canales de comunicación, y dentro de esa estructura se alojan multiconjuntos de objetos que evolucionan de acuerdo a unas determinadas reglas de evolución. Al conjunto de dispositivos contemplados por la Computación de Membranas se les denomina genéricamente como Sistemas P. Hasta el momento los Sistemas P sólo han sido estudiados a nivel teórico y no han sido plenamente implementados ni en medios electrónicos, ni en medios bioquímicos, sólo han sido simulados o parcialmente implementados. Por tanto, la implantación de estos sistemas es un reto de investigación abierto. Esta tesis aborda uno de los problemas que debe ser resuelto para conseguir la implantación de los Sistemas P sobre plataformas hardware. El problema concreto se centra en el modelo de los Sistemas P de Transición y surge de la necesidad de disponer de algoritmos de aplicación de reglas que, independientemente de la plataforma hardware sobre la que se implementen, cumplan los requisitos de ser no deterministas, masivamente paralelos y además su tiempo de ejecución esté estáticamente acotado. Como resultado se ha obtenido un conjunto de algoritmos (tanto para plataformas secuenciales, como para plataformas paralelas) que se adecúan a las diferentes configuraciones de los Sistemas P. ABSTRACT The main feature of Natural Computing is the use of concepts, principles and mechanisms inspired by Nature. Natural Computing and within it, Membrane Computing emerges as an potential alternative to conventional computing and as from the search for new models of computation that may overcome the existing limitations in conventional models. Specifically, Membrane Computing was created to formulate a new computational paradigm inspired by the structure and functioning of biological cells: it consists of a membrane structure, which acts as separators as well as communication channels, and within this structure are stored multisets of objects that evolve according to certain evolution rules. The set of computing devices addressed by Membrane Computing are generically known P systems. Up to now, no P systems have been fully implemented yet in electronic or biochemical means. They only have been studied in theory, simulated or partially implemented. Therefore, the implementation of these systems is an open research challenge. This thesis addresses one of the problems to be solved in order to deploy P systems on hardware platforms. This specific problem is focused on the Transition P System model and emerges from the need of providing application rules algorithms that independently on the hardware platform on which they are implemented, meets the requirements of being nondeterministic, massively parallel and runtime-bounded. As a result, this thesis has developed a set of algorithms for both platforms, sequential and parallel, adapted to all possible configurations of P systems.
Resumo:
La computación con membranas surge como una alternativa a la computación tradicional. Dentro de este campo se sitúan los denominados Sistemas P de Transición que se basan en la existencia de regiones que contienen recursos y reglas que hacen evolucionar a dichos recursos para poder llevar a cada una de las regiones a una nueva situación denominada configuración. La sucesión de las diferentes configuraciones conforman la computación. En este campo, el Grupo de Computación Natural de la Universidad Politécnica de Madrid lleva a cabo numerosas investigaciones al amparo de las cuales se han publicado numerosos artículos y realizado varias tesis doctorales. Las principales vías de investigación han sido, hasta el momento, el estudio del modelo teórico sobre el que se definen los Sistemas P, el estudio de los algoritmos que se utilizan para la aplicación de las reglas de evolución en las regiones, el diseño de nuevas arquitecturas que mejoren las comunicaciones entre las diferentes membranas (regiones) que componen el sistema y la implantación de estos sistemas en dispositivos hardware que pudiesen definir futuras máquinas basadas en este modelo. Dentro de este último campo, es decir, dentro del objetivo de construir finalmente máquinas que puedan llevar a cabo la funcionalidad de la computación con Sistemas P, la presente tesis doctoral se centra en el diseño de dos procesadores paralelos que, aplicando variantes de algoritmos existentes, favorezcan el crecimiento en el nivel de intra-paralelismo a la hora de aplicar las reglas. El diseño y creación de ambos procesadores presentan novedosas aportaciones al entorno de investigación de los Sistemas P de Transición en tanto en cuanto se utilizan conceptos que aunque previamente definidos de manera teórica, no habían sido introducidos en el hardware diseñado para estos sistemas. Así, los dos procesadores mantienen las siguientes características: - Presentan un alto rendimiento en la fase de aplicación de reglas, manteniendo por otro lado una flexibilidad y escalabilidad medias que son dependientes de la tecnología final sobre la que se sinteticen dichos procesadores. - Presentan un alto nivel de intra-paralelismo en las regiones al permitir la aplicación simultánea de reglas. - Tienen carácter universal en tanto en cuanto no depende del carácter de las reglas que componen el Sistema P. - Tienen un comportamiento indeterminista que es inherente a la propia naturaleza de estos sistemas. El primero de los circuitos utiliza el conjunto potencia del conjunto de reglas de aplicación así como el concepto de máxima aplicabilidad para favorecer el intra-paralelismo y el segundo incluye, además, el concepto de dominio de aplicabilidad para determinar el conjunto de reglas que son aplicables en cada momento con los recursos existentes. Ambos procesadores se diseñan y se prueban mediante herramientas de diseño electrónico y se preparan para ser sintetizados sobre FPGAs. ABSTRACT Membrane computing appears as an alternative to traditional computing. P Systems are placed inside this field and they are based upon the existence of regions called “membranes” that contain resources and rules that describe how the resources may vary to take each of these regions to a new situation called "configuration". Successive configurations conform computation. Inside this field, the Natural Computing Group of the Universidad Politécnica of Madrid develops a large number of works and researches that provide a lot of papers and some doctoral theses. Main research lines have been, by the moment, the study of the theoretical model over which Transition P Systems are defined, the study of the algorithms that are used for the evolution rules application in the regions, the design of new architectures that may improve communication among the different membranes (regions) that compose the whole system and the implementation of such systems over hardware devices that may define machines based upon this new model. Within this last research field, this is, within the objective of finally building machines that may accomplish the functionality of computation with P Systems, the present thesis is centered on the design of two parallel processors that, applying several variants of some known algorithms, improve the level of the internal parallelism at the evolution rule application phase. Design and creation of both processors present innovations to the field of Transition P Systems research because they use concepts that, even being known before, were never used for circuits that implement the applying phase of evolution rules. So, both processors present the following characteristics: - They present a very high performance during the application rule phase, keeping, on the other hand, a level of flexibility and scalability that, even known it is not very high, it seems to be acceptable. - They present a very high level of internal parallelism inside the regions, allowing several rule to be applied at the same time. - They present a universal character meaning this that they are not dependent upon the active rules that compose the P System. - They have a non-deterministic behavior that is inherent to this systems nature. The first processor uses the concept of "power set of the application rule set" and the concept of "maximal application" number to improve parallelism, and the second one includes, besides the previous ones, the concept of "applicability domain" to determine the set of rules that may be applied in each moment with the existing resources.. Both processors are designed and tested with the design software by Altera Corporation and they are ready to be synthetized over FPGAs.
Resumo:
Esta tesis doctoral se enmarca dentro de la computación con membranas. Se trata de un tipo de computación bio-inspirado, concretamente basado en las células de los organismos vivos, en las que se producen múltiples reacciones de forma simultánea. A partir de la estructura y funcionamiento de las células se han definido diferentes modelos formales, denominados P sistemas. Estos modelos no tratan de modelar el comportamiento biológico de una célula, sino que abstraen sus principios básicos con objeto de encontrar nuevos paradigmas computacionales. Los P sistemas son modelos de computación no deterministas y masivamente paralelos. De ahí el interés que en los últimos años estos modelos han suscitado para la resolución de problemas complejos. En muchos casos, consiguen resolver de forma teórica problemas NP-completos en tiempo polinómico o lineal. Por otra parte, cabe destacar también la aplicación que la computación con membranas ha tenido en la investigación de otros muchos campos, sobre todo relacionados con la biología. Actualmente, una gran cantidad de estos modelos de computación han sido estudiados desde el punto de vista teórico. Sin embargo, el modo en que pueden ser implementados es un reto de investigación todavía abierto. Existen varias líneas en este sentido, basadas en arquitecturas distribuidas o en hardware dedicado, que pretenden acercarse en lo posible a su carácter no determinista y masivamente paralelo, dentro de un contexto de viabilidad y eficiencia. En esta tesis doctoral se propone la realización de un análisis estático del P sistema, como vía para optimizar la ejecución del mismo en estas plataformas. Se pretende que la información recogida en tiempo de análisis sirva para configurar adecuadamente la plataforma donde se vaya a ejecutar posteriormente el P sistema, obteniendo como consecuencia una mejora en el rendimiento. Concretamente, en esta tesis se han tomado como referencia los P sistemas de transiciones para llevar a cabo el estudio de dicho análisis estático. De manera un poco más específica, el análisis estático propuesto en esta tesis persigue que cada membrana sea capaz de determinar sus reglas activas de forma eficiente en cada paso de evolución, es decir, aquellas reglas que reúnen las condiciones adecuadas para poder ser aplicadas. En esta línea, se afronta el problema de los estados de utilidad de una membrana dada, que en tiempo de ejecución permitirán a la misma conocer en todo momento las membranas con las que puede comunicarse, cuestión que determina las reglas que pueden aplicarse en cada momento. Además, el análisis estático propuesto en esta tesis se basa en otra serie de características del P sistema como la estructura de membranas, antecedentes de las reglas, consecuentes de las reglas o prioridades. Una vez obtenida toda esta información en tiempo de análisis, se estructura en forma de árbol de decisión, con objeto de que en tiempo de ejecución la membrana obtenga las reglas activas de la forma más eficiente posible. Por otra parte, en esta tesis se lleva a cabo un recorrido por un número importante de arquitecturas hardware y software que diferentes autores han propuesto para implementar P sistemas. Fundamentalmente, arquitecturas distribuidas, hardware dedicado basado en tarjetas FPGA y plataformas basadas en microcontroladores PIC. El objetivo es proponer soluciones que permitan implantar en dichas arquitecturas los resultados obtenidos del análisis estático (estados de utilidad y árboles de decisión para reglas activas). En líneas generales, se obtienen conclusiones positivas, en el sentido de que dichas optimizaciones se integran adecuadamente en las arquitecturas sin penalizaciones significativas. Summary Membrane computing is the focus of this doctoral thesis. It can be considered a bio-inspired computing type. Specifically, it is based on living cells, in which many reactions take place simultaneously. From cell structure and operation, many different formal models have been defined, named P systems. These models do not try to model the biological behavior of the cell, but they abstract the basic principles of the cell in order to find out new computational paradigms. P systems are non-deterministic and massively parallel computational models. This is why, they have aroused interest when dealing with complex problems nowadays. In many cases, they manage to solve in theory NP problems in polynomial or lineal time. On the other hand, it is important to note that membrane computing has been successfully applied in many researching areas, specially related to biology. Nowadays, lots of these computing models have been sufficiently characterized from a theoretical point of view. However, the way in which they can be implemented is a research challenge, that it is still open nowadays. There are some lines in this way, based on distributed architectures or dedicated hardware. All of them are trying to approach to its non-deterministic and parallel character as much as possible, taking into account viability and efficiency. In this doctoral thesis it is proposed carrying out a static analysis of the P system in order to optimize its performance in a computing platform. The general idea is that after data are collected in analysis time, they are used for getting a suitable configuration of the computing platform in which P system is going to be performed. As a consequence, the system throughput will improve. Specifically, this thesis has made use of Transition P systems for carrying out the study in static analysis. In particular, the static analysis proposed in this doctoral thesis tries to achieve that every membrane can efficiently determine its active rules in every evolution step. These rules are the ones that can be applied depending on the system configuration at each computational step. In this line, we are going to tackle the problem of the usefulness states for a membrane. This state will allow this membrane to know the set of membranes with which communication is possible at any time. This is a very important issue in determining the set of rules that can be applied. Moreover, static analysis in this thesis is carried out taking into account other properties such as membrane structure, rule antecedents, rule consequents and priorities among rules. After collecting all data in analysis time, they are arranged in a decision tree structure, enabling membranes to obtain the set of active rules as efficiently as possible in run-time system. On the other hand, in this doctoral thesis is going to carry out an overview of hardware and software architectures, proposed by different authors in order to implement P systems, such as distributed architectures, dedicated hardware based on PFGA, and computing platforms based on PIC microcontrollers. The aim of this overview is to propose solutions for implementing the results of the static analysis, that is, usefulness states and decision trees for active rules. In general, conclusions are satisfactory, because these optimizations can be properly integrated in most of the architectures without significant penalties.
Resumo:
Con el surgir de los problemas irresolubles de forma eficiente en tiempo polinomial en base al dato de entrada, surge la Computación Natural como alternativa a la computación clásica. En esta disciplina se trata de o bien utilizar la naturaleza como base de cómputo o bien, simular su comportamiento para obtener mejores soluciones a los problemas que los encontrados por la computación clásica. Dentro de la computación natural, y como una representación a nivel celular, surge la Computación con Membranas. La primera abstracción de las membranas que se encuentran en las células, da como resultado los P sistemas de transición. Estos sistemas, que podrían ser implementados en medios biológicos o electrónicos, son la base de estudio de esta Tesis. En primer lugar, se estudian las implementaciones que se han realizado, con el fin de centrarse en las implementaciones distribuidas, que son las que pueden aprovechar las características intrínsecas de paralelismo y no determinismo. Tras un correcto estudio del estado actual de las distintas etapas que engloban a la evolución del sistema, se concluye con que las distribuciones que buscan un equilibrio entre las dos etapas (aplicación y comunicación), son las que mejores resultados presentan. Para definir estas distribuciones, es necesario definir completamente el sistema, y cada una de las partes que influyen en su transición. Además de los trabajos de otros investigadores, y junto a ellos, se realizan variaciones a los proxies y arquitecturas de distribución, para tener completamente definidos el comportamiento dinámico de los P sistemas. A partir del conocimiento estático –configuración inicial– del P sistema, se pueden realizar distribuciones de membranas en los procesadores de un clúster para obtener buenos tiempos de evolución, con el fin de que la computación del P sistema sea realizada en el menor tiempo posible. Para realizar estas distribuciones, hay que tener presente las arquitecturas –o forma de conexión– de los procesadores del clúster. La existencia de 4 arquitecturas, hace que el proceso de distribución sea dependiente de la arquitectura a utilizar, y por tanto, aunque con significativas semejanzas, los algoritmos de distribución deben ser realizados también 4 veces. Aunque los propulsores de las arquitecturas han estudiado el tiempo óptimo de cada arquitectura, la inexistencia de distribuciones para estas arquitecturas ha llevado a que en esta Tesis se probaran las 4, hasta que sea posible determinar que en la práctica, ocurre lo mismo que en los estudios teóricos. Para realizar la distribución, no existe ningún algoritmo determinista que consiga una distribución que satisfaga las necesidades de la arquitectura para cualquier P sistema. Por ello, debido a la complejidad de dicho problema, se propone el uso de metaheurísticas de Computación Natural. En primer lugar, se propone utilizar Algoritmos Genéticos, ya que es posible realizar alguna distribución, y basada en la premisa de que con la evolución, los individuos mejoran, con la evolución de dichos algoritmos, las distribuciones también mejorarán obteniéndose tiempos cercanos al óptimo teórico. Para las arquitecturas que preservan la topología arbórea del P sistema, han sido necesarias realizar nuevas representaciones, y nuevos algoritmos de cruzamiento y mutación. A partir de un estudio más detallado de las membranas y las comunicaciones entre procesadores, se ha comprobado que los tiempos totales que se han utilizado para la distribución pueden ser mejorados e individualizados para cada membrana. Así, se han probado los mismos algoritmos, obteniendo otras distribuciones que mejoran los tiempos. De igual forma, se han planteado el uso de Optimización por Enjambres de Partículas y Evolución Gramatical con reescritura de gramáticas (variante de Evolución Gramatical que se presenta en esta Tesis), para resolver el mismo cometido, obteniendo otro tipo de distribuciones, y pudiendo realizar una comparativa de las arquitecturas. Por último, el uso de estimadores para el tiempo de aplicación y comunicación, y las variaciones en la topología de árbol de membranas que pueden producirse de forma no determinista con la evolución del P sistema, hace que se deba de monitorizar el mismo, y en caso necesario, realizar redistribuciones de membranas en procesadores, para seguir obteniendo tiempos de evolución razonables. Se explica, cómo, cuándo y dónde se deben realizar estas modificaciones y redistribuciones; y cómo es posible realizar este recálculo. Abstract Natural Computing is becoming a useful alternative to classical computational models since it its able to solve, in an efficient way, hard problems in polynomial time. This discipline is based on biological behaviour of living organisms, using nature as a basis of computation or simulating nature behaviour to obtain better solutions to problems solved by the classical computational models. Membrane Computing is a sub discipline of Natural Computing in which only the cellular representation and behaviour of nature is taken into account. Transition P Systems are the first abstract representation of membranes belonging to cells. These systems, which can be implemented in biological organisms or in electronic devices, are the main topic studied in this thesis. Implementations developed in this field so far have been studied, just to focus on distributed implementations. Such distributions are really important since they can exploit the intrinsic parallelism and non-determinism behaviour of living cells, only membranes in this case study. After a detailed survey of the current state of the art of membranes evolution and proposed algorithms, this work concludes that best results are obtained using an equal assignment of communication and rules application inside the Transition P System architecture. In order to define such optimal distribution, it is necessary to fully define the system, and each one of the elements that influence in its transition. Some changes have been made in the work of other authors: load distribution architectures, proxies definition, etc., in order to completely define the dynamic behaviour of the Transition P System. Starting from the static representation –initial configuration– of the Transition P System, distributions of membranes in several physical processors of a cluster is algorithmically done in order to get a better performance of evolution so that the computational complexity of the Transition P System is done in less time as possible. To build these distributions, the cluster architecture –or connection links– must be considered. The existence of 4 architectures, makes that the process of distribution depends on the chosen architecture, and therefore, although with significant similarities, the distribution algorithms must be implemented 4 times. Authors who proposed such architectures have studied the optimal time of each one. The non existence of membrane distributions for these architectures has led us to implement a dynamic distribution for the 4. Simulations performed in this work fix with the theoretical studies. There is not any deterministic algorithm that gets a distribution that meets the needs of the architecture for any Transition P System. Therefore, due to the complexity of the problem, the use of meta-heuristics of Natural Computing is proposed. First, Genetic Algorithm heuristic is proposed since it is possible to make a distribution based on the premise that along with evolution the individuals improve, and with the improvement of these individuals, also distributions enhance, obtaining complexity times close to theoretical optimum time. For architectures that preserve the tree topology of the Transition P System, it has been necessary to make new representations of individuals and new algorithms of crossover and mutation operations. From a more detailed study of the membranes and the communications among processors, it has been proof that the total time used for the distribution can be improved and individualized for each membrane. Thus, the same algorithms have been tested, obtaining other distributions that improve the complexity time. In the same way, using Particle Swarm Optimization and Grammatical Evolution by rewriting grammars (Grammatical Evolution variant presented in this thesis), to solve the same distribution task. New types of distributions have been obtained, and a comparison of such genetic and particle architectures has been done. Finally, the use of estimators for the time of rules application and communication, and variations in tree topology of membranes that can occur in a non-deterministic way with evolution of the Transition P System, has been done to monitor the system, and if necessary, perform a membrane redistribution on processors to obtain reasonable evolution time. How, when and where to make these changes and redistributions, and how it can perform this recalculation, is explained.
Resumo:
Starting from the way the inter-cellular communication takes place by means of protein channels and also from the standard knowledge about neuron functioning, we propose a computing model called a tissue P system, which processes symbols in a multiset rewriting sense, in a net of cells similar to a neural net. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. Such cell nets are shown to be rather powerful: they can simulate a Turing machine even when using a small number of cells, each of them having a small number of states. Moreover, in the case when each cell works in the maximal manner and it can excite all the cells to which it can send impulses, then one can easily solve the Hamiltonian Path Problem in linear time. A new characterization of the Parikh images of ET0L languages are also obtained in this framework.