9 resultados para Over-Education

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web-based education or „e-learning‟ has become a critical component in higher education for the last decade, replacing other distance learning methods, such as traditional computer training or correspondence learning. The number of university students who take on-line courses is continuously increasing all over the world. In Spain, nearly a 90% of the universities have an institutional e-learning platform and over 60% of the traditional on-site courses use this technology as a supplement to the traditional face-to-face classes. This new form of learning allows the disappearance of geographical barriers and enables students to schedule their own learning process, among some other advantages. On-line education is developed through specific software called „e-learning platform‟ or „virtual learning environment‟ (VLE). A considerable number of web-based tools to deliver distance courses are currently available. Open source software packages such as Moodle, Sakai, dotLRN or Dokeos are the most commonly used in the virtual campuses of Spanish universities. This paper analyzes the possibilities that virtual learning environments provide university teachers and learners and offers a technical comparison among some of the most popular e-learning learning platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Area, launched in 1999 with the Bologna Declaration, has bestowed such a magnitude and unprecedented agility to the transformation process undertaken by European universities. However, the change has been more profound and drastic with regards to the use of new technologies both inside and outside the classroom. This article focuses on the study and analysis of the technology’s history within the university education and its impact on teachers, students and teaching methods. All the elements that have been significant and innovative throughout the history inside the teaching process have been analyzed, from the use of blackboard and chalk during lectures, the use of slide projectors and transparent slides, to the use of electronic whiteboards and Internet nowadays. The study is complemented with two types of surveys that have been performed among teachers and students during the school years 1999 - 2011 in the School of Civil Engineering at the Polytechnic University of Madrid. The pros and cons of each of the techniques and methodologies used in the learning process over the last decades are described, unfolding how they have affected the teacher, who has evolved from writing on a whiteboard to project onto a screen, the student, who has evolved from taking handwritten notes to download information or search the Internet, and the educational process, that has evolved from the lecture to acollaborative learning and project-based learning. It is unknown how the process of learning will evolve in the future, but we do know the consequences that some of the multimedia technologies are having on teachers, students and the learning process. It is our goal as teachers to keep ourselves up to date, in order to offer the student adequate technical content, while providing proper motivation through the use of new technologies. The study provides a forecast in the evolution of multimedia within the classroom and the renewal of the education process, which in our view, will set the basis for future learning process within the context of this new interactive era.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this article is to focus on the analysis of teaching techniques, ranging from the use of the blackboard and chalk in old traditional classes, using slides and overhead projectors in the eighties and use of presentation software in the nineties, to the video, electronic board and network resources nowadays. Furthermore, all the aforementioned, is viewed under the different mentalities in which the teacher conditions the student using the new teaching technique, improving soft skills but maybe leading either to encouragement or disinterest, and including the lack of educational knowledge consolidation at scientific, technology and specific levels. In the same way, we study the process of adaptation required for teachers, the differences in the processes of information transfer and education towards the student, and even the existence of teachers who are not any longer appealed by their work due which has become much simpler due to new technologies and the greater ease in the development of classes due to the criteria described on the new Grade Programs adopted by the European Higher Education Area. Moreover, it is also intended to understand the evolution of students’ profiles, from the eighties to present time, in order to understand certain attitudes, behaviours, accomplishments and acknowledgements acquired over the semesters within the degree Programs. As an Educational Innovation Group, another key question also arises. What will be the learning techniques in the future?. How these evolving matters will affect both positively and negatively on the mentality, attitude, behaviour, learning, achievement of goals and satisfaction levels of all elements involved in universities’ education? Clearly, this evolution from chalk to the electronic board, the three-dimensional view of our works and their sequence, greatly facilitates the understanding and adaptation later on to the business world, but does not answer to the unknowns regarding the knowledge and the full development of achievement’s indicators in basic skills of a degree. This is the underlying question which steers the roots of the presented research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career. This work analyses in depth the justification of such practical trips only on Applied Geology. This methodology could be usual in Study Plans of pure sciences career, Geology or Biology, but not in Civil Engineering like teaching method. It shows the criteria and methods of planning and the result which manifests itself in pupils. Therefore, work shows a methodology taking in account the engineering perspective, the practical point of view and the learning process inside students and their evaluation and, hence, their marks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems Engineering (SE in the following) has not received much attention as a subject matter in engineering curricula. There are several dozens of universities around the world offering programs (most of them at the graduate level) on systems science and engineering. However, SE is, per se, rarely found among the courses offered by engineering schools. This observation does not strictly mean that systems concepts be left apart. For example, it is usual to find specialized courses for systems of some particular classes (e.g., courses on software systems engineering for computing curricula) or for particular phases of the system life cycle (e.g., courses on systems analysis). Even so, these kinds of courses tend to over-emphasize the importance of specific methodologies and, in consequence, to deviate the attention from the realm of systernness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineering aims to work with what knowledge is available to achieve society's goals (Coyle, Murphy, and Grimson 2007). The current environmental challenges and the characteristics of the labour market mean that the effectiveness of Engineering activities in Geosciences must be increased through the development of technical knowledge and the inclusion of suitable training aimed at solving real cases (European Commission 2010). Human capital – understood as the talents, skills and capabilities of higher education graduates – is perceived as an essential element for sustainable economic growth and development in the globalised economy (Sianesi and Van Reenan 2003). We need, therefore, to rethink our approaches to curriculum, instruction and assessment in science education, particularly because of the rapid growth of the scientific knowledge, tools/technologies and theories that have originated over the last 50 years (Duschl and Grandy 2013).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social learning processes can be the basis of a method of agricultural innovation that involves expert and empirical knowledge. In this sense, the objective of this study was to determine the effectiveness and sustainability of an innovation process, understood as social learning, in a group of small farmers in the southern highlands of Peru. Innovative proposals and its permanence three years after the process finished were evaluated. It was observed that innovation processes generated are maintained over time; however, new innovations are not subsequently generated. We conclude that adult learning processes and innovation based on social learning are more effective and sustainable; however, the farmers internalization in innovation processes is given longer term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is based on a case study located in Avila, central Spain. Its main objectives are to implement an entrepreneurship program and design a plan of capacity building and education for business in order to promote the development of rural areas. The methodological approach of the program is based on the use of tools that permit involving the various actors of the area from the early planning stages. The university's group that is carrying out the field work has relied on these participatory tools in very different areas and contexts for over 25 years. This has allowed the development of an advanced planning model called ?Working With People? that connects expert and experience knowledge in the territories where it is applied. With this methodological approach, the diagnosis of the territory and the design of the program's strategy has been carried out. Once completed the first phase of the program and in order to ensure the sustainability and applicability of future entrepreneurial initiatives, it is necessary to support and strengthen potential entrepreneurs through training activities and capacity building. It relies on ?How to learn from people who live there? to promote investment projects and to teach them with adequate educational skills. In this context, this article aims to study the implementation strategy of these training and capacity building activities studied from an academic perspective, as well as analyzing the potential effects of these actions in promoting entrepreneurship in the territories