8 resultados para Optimization procedures
em Universidad Politécnica de Madrid
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.
Resumo:
This article presents an alternative approach to the decision-making process in transport strategy design. The study explores the possibility of integrating forecasting, assessment and optimization procedures in support of a decision-making process designed to reach the best achievable scenario through mobility policies. Long-term evaluation, as required by a dynamic system such as a city, is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The social welfare achieved by implementing mobility LUTI model policies is measured through a cost-benefit analysis and maximized through an optimization process throughout the evaluation period. The method is tested by optimizing a pricing policy scheme in Madrid on a cordon toll in a context requiring system efficiency, social equity and environmental quality. The optimized scheme yields an appreciable increase in social surplus through a relatively low rate compared to other similar pricing toll schemes. The results highlight the different considerations regarding mobility impacts on the case study area, as well as the major contributors to social welfare surplus. This leads the authors to reconsider the cost-analysis approach, as defined in the study, as the best option for formulating sustainability measures.
Resumo:
This article presents an alternative approach to the decision-making process in transport strategy design. The study explores the possibility of integrating forecasting, assessment and optimization procedures in support of a decision-making process designed to reach the best achievable scenario through mobility policies. Long-term evaluation, as required by a dynamic system such as a city, is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The social welfare achieved by implementing mobility LUTI model policies is measured through a cost-benefit analysis and maximized through an optimization process throughout the evaluation period. The method is tested by optimizing a pricing policy scheme in Madrid on a cordon toll in a context requiring system efficiency, social equity and environmental quality. The optimized scheme yields an appreciable increase in social surplus through a relatively low rate compared to other similar pricing toll schemes. The results highlight the different considerations regarding mobility impacts on the case study area, as well as the major contributors to social welfare surplus. This leads the authors to reconsider the cost-analysis approach, as defined in the study, as the best option for formulating sustainability measures.
Resumo:
The technique of Abstract Interpretation has allowed the development of very sophisticated global program analyses which are at the same time provably correct and practical. We present in a tutorial fashion a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, nonfailure, and bounds on resource consumption (time or space cost). CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements the described functionality, will be used to illustrate the fundamental ideas.
Resumo:
We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
The reliability of bidirectional communication link can be guaranteed with Automatic Repeat Request Procedures (ARQ). The standard STANAG 5066 describes the ARQ procedure for HF communications that can either be applied to existing HF physical layers modems or adapted to future physical layer designs. In this contribution the physical layer parameters of an HF modem (HFDVL), developed by the authors over the last decade, are chosen to optimize the performance of the ARQ procedure described in STANAG 5066. Besides the interleaving length, constellation size and coding type, the OFDM-based HFDVL modem permits the selection of the number of receiver antennas. It will be shown that this parameter gives additional degrees of freedom and permits reliable communication over low SNR HF communication links.
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.