4 resultados para Optimal transportation
em Universidad Politécnica de Madrid
Resumo:
This article presents an alternative approach to the decision-making process in transport strategy design. The study explores the possibility of integrating forecasting, assessment and optimization procedures in support of a decision-making process designed to reach the best achievable scenario through mobility policies. Long-term evaluation, as required by a dynamic system such as a city, is provided by a strategic Land-Use and Transport Interaction (LUTI) model. The social welfare achieved by implementing mobility LUTI model policies is measured through a cost-benefit analysis and maximized through an optimization process throughout the evaluation period. The method is tested by optimizing a pricing policy scheme in Madrid on a cordon toll in a context requiring system efficiency, social equity and environmental quality. The optimized scheme yields an appreciable increase in social surplus through a relatively low rate compared to other similar pricing toll schemes. The results highlight the different considerations regarding mobility impacts on the case study area, as well as the major contributors to social welfare surplus. This leads the authors to reconsider the cost-analysis approach, as defined in the study, as the best option for formulating sustainability measures.
Resumo:
This paper describes a theoretical model based primarily on transaction costs, for comparing the various tendering mechanisms used for transportation Public-Private Partnership (PPP) projects. In particular, the model contrasts negotiated procedures with the open procedure, as defined by the current European Union legislation on public tendering. The model includes both ex ante transaction costs (borne during the tendering stage) and ex post transaction costs (such as enforcement costs, re-negotiation costs, and costs arising from litigation between partners), explaining the trade-off between them. Generally speaking, it is assumed that the open procedure implies lower transaction costs ex ante, while the negotiated procedure reduces the probability of the appearance of new contingencies not foreseen in the contract, hence diminishing the expected value of transaction costs ex post. Therefore, the balance between ex ante and ex post transaction costs is the main criterion for deciding whether the open or negotiated procedure would be optimal. Notwithstanding, empirical evidence currently exists only on ex ante transaction costs in transportation infrastructure projects. This evidence has shown a relevant difference between the two procedures as far as ex ante costs are concerned, favouring the open procedure. The model developed in this paper also demonstrates that a larger degree of complexity in a contract does not unequivocally favour the use of a negotiated procedure. Only in those cases dealing with very innovative projects, where important dimensions of the quality of the asset or service are not verifiable, may we observe an advantage in favour of the negotiated procedure. The bottom line is that we find it difficult to justify the employment of negotiated procedures in most transportation PPP contracts, especially in the field of roads. Nevertheless, the field remains open for future empirical work and research on the levels of transaction costs borne ex post in PPP contracts, as well as on the probabilities of such costs appearing under any of the procurement procedures.
Resumo:
In some countries, such as Spain, it is very common that in the same corridor there are two roads with the same origin and destination but with some differences. The most important contrast is that one is a toll highway which offers a better quality than the parallel road in exchange of a price. The users decide if the price of the toll is worth to pay for the advantages offered. This problem is known as the untolled alternative and it has been largely studied in the academic literature, particularly related to economic efficiency and the optimal welfare toll. However, there is a gap in the literature academic regarding how it affects income distribution to the optimal toll. The main objective of the paper is to fill this gap. In this paper a theoretical model in order to obtain the optimal welfare price in a toll highway that competes for capturing the traffic with a conventional road is developed. This model is done for non-usual users who decide over the expectation of free flow conditions. This model is finally applied to the variables we want to focus on: average value of travel time (VTT) which is strongly related with income, dispersion of this VTT and traffic levels, from free flow to congestion. Derived from the results, we conclude that the higher the average VTT the higher the optimal price, the higher the dispersion of this VTT the lower the optimal price and finally, the more the traffic the higher the optimal toll.
Resumo:
In some countries, such as Spain, it is very common that in the same corridor there are two roads with the same origin and destination but with some differences. The most important contrast is that one is a toll highway which offers a better quality than the parallel road in exchange of a price. The users decide if the price of the toll is worth paying for the advantages offered. This problem is known as the untolled alternative and it has been largely studied in the academic literature, particularly related to economic efficiency and the optimal welfare toll. However, there is a gap in the academic literature regarding how income distribution affects the optimal toll. The main objective of the paper is to fill this gap. In this paper a theoretical model is developed in order to obtain the optimal welfare price in a toll highway that competes with a conventional road for capturing the traffic. This model is done for non-usual users who decide over the expectation of free flow conditions. This model is finally applied to the variables we want to focus on: average value of travel time (VTT) which is strongly related with income, dispersion of this VTT and traffic levels, from free flow to congestion. Derived from the results, we conclude that the higher the average VTT the higher the optimal price, the higher the dispersion of this VTT the lower the optimal price and finally, the more the traffic the higher the optimal toll