4 resultados para Optical coatings

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pure and quinine doped silica coatings have been prepared over sodalime glasses. The coatings were consolidated at low temperature (range 60-180 A degrees C) preserving optical activity of quinine molecule. We designed a device to test the guiding properties of the coatings. We confirmed with this device that light injected in pure silica coatings is guided over distances of meters while quinine presence induces isotropic photoluminescence. With the combined use of both type of coatings, it is possible to design light guiding devices and illuminate regions in glass elements without electronic circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cadmium has been widely used as a coating to provide protection against galvanic corrosion for steels and for its natural lubricity on threaded applications. However, it is a toxic metal and a known carcinogenic agent, which is plated from an aqueous bath containing cyanide salts. For these reasons, the use of cadmium has been banned in Europe for most industrial applications. However, the aerospace industry is still exempt due to the stringent technical and safety requirements associated with aeronautical applications, as an acceptable replacement is yet to be found. Al slurry coatings have been developed as an alternative to replace cadmium coatings. The coatings were deposited on AISI 4340 steel and have been characterized by optical and electron microscopy. Testing included salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, coating-substrate and paint-coating adhesion, electric conductivity, galvanic corrosion, embrittlement and fatigue. The results indicated that Al slurry coatings are an excellent alternative for Cd replacement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Added value products are being developed in ceramic industry. Different optical effects as bright metallic shine or new functionalities as hydrophobicity or bactericide characteristics are the new properties searched on the tiles. In this study, we prepare glassy coatings for tiles based on copper pigment by a conventional industrial process. The obtained coatings present different aesthetical aspects, including bright metallic aspect which confers a high decorative value to the tile. Furthermore, these metallic coatings present hydrophobic properties with contact angles with water as high as 115 degrees and also bactericide characteristics. Superficial microstructure and nanoparticles were found in the bactericide-hydrophobic samples, resembling the surface of hydrophobic leaf surfaces. This structure was formed by the crystallization of CuO nanoparticles as Tenorite due to the copper saturation of the glassy matrix at the surface of the coatings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multijunction solar cells (MJSC) use anti-reflective coatings (ARC) to minimize Fresnel reflection losses for a family of light incidence angles. These coatings adapt the refractive index of the cell to that of the surrounding medium. Patterns with sizes in the range of the light wavelength can be used to further reduce reflections through diffraction. Transparent nanopatterns with a gradual profile, called moth-eye nanostructures, can adapt the refractive index of the optical interfaces (often with n∼1.5) used to encapsulate concentrator solar cells to that of the air (n air∼1). Here we show the effect of a nanometric moth-eye ARC with a round motif deposited on commercial MJSC that achieves short-circuit current (I SC) gains greater than 2% at normal incidence and even higher in the case of tilted illumination. In this work, MJSC with different moth-eye ARC are characterized under quantum efficiency (QE) as well as under concentrated illumination I-V in order to assess their potential. Simulations based on coupled wave analysis (RCWA) are used to fit the experimental results with successful results.