4 resultados para Ontology validation
em Universidad Politécnica de Madrid
Resumo:
Ontology quality can be affected by the difficulties involved in on-tology modelling which may imply the appearance of anomalies in ontologies. This situation leads to the need of validating ontologies, that is, assessing their quality and correctness. Ontology validation is a key activity in different ontol-ogy engineering scenarios such as development and selection. This paper con-tributes to the ontology validation activity by proposing a web-based tool, called OOPS!, independent of any ontology development environment, for de-tecting anomalies in ontologies. This tool will help developers to improve on-tology quality by automatically detecting potential errors.
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.d
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Primary-care pediatricians could play a key role in early detection of development disorders as quick as they might have enough time and knowledge for suitable screenings at clinical routine. This research paper focuses on the development and validation of a knowledge-based web tool whose aim is to support a smart detection of developmental disorders in early childhood. Thus, the use of the system can trigger the necessary preventive and therapeutic actions from birth until the age of six. The platform was designed on the basis of an analysis of significant 21 cases of children with language disorders that supported the creation of a specific knowledge base, its ontology and a set of description logic relations. The resulting system is being validated in a scalable approach with a team of seven experts from the fields of neonathology, pediatrics, neurology and language therapy.