13 resultados para Offshore structures.
em Universidad Politécnica de Madrid
Resumo:
The objective of this paper is to analyse the influence of the variation of some parameters used in the analysis of the dynamic response of offshore structures under the action of wind generated waves. The structural response has been obtained by stochastic methods using two discretization models. One with lumped parameters, using translational degrees of freedom (d.o.f.) and the other with one-dimensional finite elements. Using each of these methods the problem has been solved with several d.o.f., analysing the influence of the number of d.o.f. on the results.
Resumo:
The aim of this paper is to explain the chloride concentration profiles obtained experimentally from control samples of an offshore platform after 25 years of service life. The platform is located 12 km off the coast of the Brazilian province Rio Grande do Norte, in the north-east of Brazil. The samples were extracted at different orientations and heights above mean sea level. A simple model based on Fick’s second law is considered and compared with a finite element model which takes into account transport of chloride ions by diffusion and convection. Results show that convective flows significantly affect the studied chloride penetrations. The convection velocity is obtained by fitting the finite element solution to the experimental data and seems to be directly proportional to the height above mean sea level and also seems to depend on the orientation of the face of the platform. This work shows that considering solely diffusion as transport mechanism does not allow a good prediction of the chloride profiles. Accounting for capillary suction due to moisture gradients permits a better interpretation of the material’s behaviour
Resumo:
Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements. 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
El fenómeno de la socavación puede poner en peligro la operatividad o la seguridad de estructuras offshore comprometiendo su estabilidad global. Hasta el momento, la gran mayoría de las investigaciones destinadas a estudiar el origen y el desarrollo de este fenómeno han estado centradas en entornos fluviales, bajo condiciones de corriente continua. En la última década, debido al crecimiento del mercado de la eólica marina, han surgido numerosos estudios para la caracterización de este fenómeno en el entorno marino, teniendo en cuenta que estas estructuras se encuentran sometidas de forma simultánea a los efectos de la corriente y el oleaje, y las corrientes provocadas por las mareas. Ante la observada carencia de criterios existentes para el diseño de protecciones frente a la socavación, la presente Tesis Doctoral surge con el objetivo principal de desarrollar una serie de recomendaciones que permitan mejorar y optimizar el diseño de estas estructuras, teniendo en cuenta no sólo los parámetros geométricos de las cimentaciones de los aerogeneradores, o la propia erosión, sino también, variables características del oleaje como la altura de ola, el periodo o la longitud de onda, así como la profundidad o la batimétrica de la cimentación. La caracterización de los sistemas de protección basados en materiales naturales destinados al control de la socavación en obras marítimas presentes en instalaciones eólicas marinas no es el único objetivo alcanzado en la presente Tesis Doctoral. A través de la calibración del parámetro de altura de ola adimensional (H0) en diferentes parques eólicos europeos, y de acuerdo al criterio propuesto por Van der Meer (1988), se propone la clasificación de este tipo de estructuras de protección, basadas en material granular o escollera. La información recopilada sobre la socavación registrada en numerosos parques eólicos con protección también ha permitido estudiar la funcionalidad de este tipo de protecciones instaladas hasta la fecha. Asímismo, gracias al conocimiento adquirido sobre el fenómeno de la socavación, se plantea una propuesta para la mejora de la caracterización de este fenómeno en ambiente marino basada en el estudio de la influencia del campo de aceleraciones. La presente Tesis Doctoral permite mejorar el diseño de las protecciones frente a la socavación que se utilizan en parques eólicos marinos teniendo en cuenta las acciones del clima marítimo, supliendo de este modo las carencias que hasta el momento presentan las formulaciones existentes, las cuales únicamente toman en consideración la geometría de las cimentaciones, el ángulo de rozamiento interno del terreno y la estimación de la máxima socavación que puede llegar a producirse. Scour phenomenon jeopardizes the stability and functionality of offshore structures compromising its overall stability. So far, most studies about the origin and the development of this phenomenon have been focused on river environments (under steady current conditions). In the last decade a lot of research projects about the characterization of this phenomenon have been carried out due to the growth of offshore wind industry. These projects take into account that these structures are subjected simultaneously to current, waves and tidal effects. This PhD Thesis arises due to the current lack of criteria for the design of scour protections. Its main objective is to develop some recommendations to improve and to optimize the design of scour protection structures. For that it is necessary to take into account not only the geometrical parameters of foundations or the erosion forecasted, but also wave variables such as wave height, wave period or wavelength. Characterization of protection systems based on natural materials for the control of the scour in offshore wind farms was not the only goal achieved in this PhD Thesis. Through the calibration of the dimensionless wave height parameter (H0) in different European offshore wind farms, and according to the criteria proposed by Van der Meer (1988), a classification of these protection structures based on natural elements (rocks or riprap) has been proposed. Scour data registered in numerous offshore wind farms with scour protection systems also allowed to study the functionality of this type of protection installed up to now. Thanks to the knowledge acquired about the scour development, a proposal for the improvement of the characterization of this phenomenon in marine environment is proposed. This has been based on the study of the influence of the acceleration parameters. This PhD Thesis improves the design of scour protections used in offshore wind facilities taking into account maritime climate actions. To solve the current formulae deficiencies only considering the foundation geometry, the internal friction angle of the seabed and the maximum scour depth forecasted.
Resumo:
A theoretical and numerical framework to model the foundation of marine offshore structures is presented. The theoretical model is composed by a system of partial differential equations describing coupling between seabed solid skeleton and pore fluids (water, air, oil,…) combined with a system of ordinary differential equations describing the specific constitutive relation of the seabed soil skeleton. Once the theoretical model is described, the finite element numerical procedure to achieve an approximate solution of the governing equations is outlined. In order to validate the proposed theoretical and numerical framework the seaward tilt mechanism induced by the action of breaking waves over a vertical breakwater is numerically reproduced. The results numerically attained are in agreement with the main conclusions drawn from the literature associated with this failure mechanism
Resumo:
Performance of heave plates used in offshore structures is strongly influenced by their added mass and damping, which are affected by proximity to a boundary. A previous paper by the authors presented numerical simulations of the flow around a circular solid disk oscillating at varying elevations from seabed [1]. The force calculated was used to evaluate the added mass and damping coefficients for the disk. The simulations suggest that as the structure moves closer to the seabed the added mass and damping coefficients (Ca and Cb) increases continuously. In order to understand the physics behind the added mass and damping trends, when a heave plate is moving near a seabed or closer to the free surface, the flow characteristics around the heave plate are examined numerically in this paper. Flow around oscillating disks is dominated by generation and development of phase-dependent vortical structures, characterized by the KC number and the distance from the seabed or free surface to the heave plate. Numerical calculations presented in this paper have comprised the qualitative analysis of the vortex shedding and the investigation of the links between such vortex shedding and, on one hand the damping coefficient, and on the other hand, pairing mechanisms such as the shedding angle.
Resumo:
Offshore wind industry has exponentially grown in the last years. Despite this growth, there are still many uncertainties in this field. This paper analyzes some current uncertainties in the offshore wind market, with the aim of going one step further in the development of this sector. To do this, some already identified uncertainties compromising offshore wind farm structural design have been identified and described in the paper. Examples of these identified uncertainties are the design of the transition piece and the difficulties for the soil properties characterization. Furthermore, this paper deals with other uncertainties not identified yet due to the limited experience in the sector. To do that, current and most used offshore wind standards and recommendations related to the design of foundation and support structures (IEC 61400-1, 2005; IEC 61400-3, 2009; DNV-OS-J101, Design of Offshore Wind Turbine, 2013 and Rules and Guidelines Germanischer Lloyd, WindEnergie, 2005) have been analyzed. These new identified uncertainties are related to the lifetime and return period, loads combination, scour phenomenon and its protection, Morison e Froude Krilov and diffraction regimes, wave theory, different scale and liquefaction. In fact, there are a lot of improvements to make in this field. Some of them are mentioned in this paper, but the future experience in the matter will make it possible to detect more issues to be solved and improved.
Resumo:
This paper is the result of research whose main objective is to analyse different methods used for the prediction of maximum scour depth and scour extension, and for the design of scour protections in offshore wind farms located in shallow water, using medium and large diameter monopile foundations. Physical agents such as waves, currents and wind play a major role in the design of structures like offshore farms. As a result, the study has highlighted the need for introducing experience backed climate monomials such as the dimensionless wave height parameter (H0) and proposes the use of formulations that can express the extent of scour protections as a function of waves in transitional waters.
Resumo:
System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes). This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge. First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors. After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations). Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram. Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system. Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.
Resumo:
The aim of this paper is to explain the chloride concentration profiles obtained experimentally from control samples of an offshore platform after 25 years of service life. The platform is located 12 km off the coast of the Brazilian province Rio Grande do Norte, in the north-east of Brazil. The samples were extracted at different orientations and heights above mean sea level. A simple model based on Fick’s second law is considered and compared with a finite element model which takes into account transport of chloride ions by diffusion and convection. Results show that convective flows significantly affect the studied chloride penetrations. The convection velocity is obtained by fitting the finite element solution to the experimental data and seems to be directly proportional to the height above mean sea level and also seems to depend on the orientation of the face of the platform. This work shows that considering solely diffusion as transport mechanism does not allow a good prediction of the chloride profiles. Accounting for capillary suction due to moisture gradients permits a better interpretation of the material’s behaviour.
Resumo:
The installation of offshore scour protection systems in offshore wind farms allows avoid the effect of scour phenomenon around these structures. Up to date, numerous research projects have been carried out to justify the necessity of the scour protection systems and also to optimize their design. Protection systems based on riprap is frequently used due to its low cost and easy availability compared to other solutions such as geotextile bags or prefabricated concrete blocks. The sizing of these structures can be performed according to a series of recommendations that can optimize the costs associated with them, but there have been only few studies with real data up to now which have allowed identify the need for such protections. This investigation aims to assess the functionality of the scour protections adopted through the available data about their characteristics and the scour depth developed around the foundations. In this sense, this paper presents the results of a study that analyzes the functionality of scour protections in different European offshore wind farms.
Resumo:
La Energía eléctrica producida mediante tecnología eólica flotante es uno de los recursos más prometedores para reducir la dependencia de energía proveniente de combustibles fósiles. Esta tecnología es de especial interés en países como España, donde la plataforma continental es estrecha y existen pocas áreas para el desarrollo de estructuras fijas. Entre los diferentes conceptos flotantes, esta tesis se ha ocupado de la tipología semisumergible. Estas plataformas pueden experimentar movimientos resonantes en largada y arfada. En largada, dado que el periodo de resonancia es largo estos puede ser inducidos por efectos de segundo orden de deriva lenta que pueden tener una influencia muy significativa en las cargas en los fondeos. En arfada las fuerzas de primer orden pueden inducir grandes movimientos y por tanto la correcta determinación del amortiguamiento es esencial para la analizar la operatividad de la plataforma. Esta tesis ha investigado estos dos efectos, para ello se ha usado como caso base el diseño de una plataforma desarrollada en el proyecto Europeo Hiprwind. La plataforma se compone de 3 columnas cilíndricas unidas mediante montantes estructurales horizontales y diagonales, Los cilindros proporcionan flotabilidad y momentos adrizante. A la base de cada columna se le ha añadido un gran “Heave Plate” o placa de cierre. El diseño es similar a otros diseños previos (Windfloat). Se ha fabricado un modelo a escala de una de las columnas para el estudio detallado del amortiguamiento mediante oscilaciones forzadas. Las dimensiones del modelo (1m diámetro en la placa de cierre) lo hacen, de los conocidos por el candidato, el mayor para el que se han publicado datos. El diseño del cilindro se ha realizado de tal manera que permite la fijación de placas de cierre planas o con refuerzo, ambos modelos se han fabricado y analizado. El modelo con refuerzos es una reproducción exacta del diseño a escala real incluyendo detalles distintivos del mismo, siendo el más importante la placa vertical perimetral. Los ensayos de oscilaciones forzadas se han realizado para un rango de frecuencias, tanto para el disco plano como el reforzado. Se han medido las fuerzas durante los ensayos y se han calculado los coeficientes de amortiguamiento y de masa añadida. Estos coeficientes son necesarios para el cálculo del fondeo mediante simulaciones en el dominio del tiempo. Los coeficientes calculados se han comparado con la literatura existente, con cálculos potenciales y por ultimo con cálculos CFD. Para disponer de información relevante para el diseño estructural de la plataforma se han medido y analizado experimentalmente las presiones en la parte superior e inferior de cada placa de cierre. Para la correcta estimación numérica de las fuerzas de deriva lenta en la plataforma se ha realizado una campaña experimental que incluye ensayos con modelo cautivo de la plataforma completa en olas bicromaticas. Pese a que estos experimentos no reproducen un escenario de oleaje realista, los mismos permiten una verificación del modelo numérico mediante la comparación de fuerzas medidas en el modelo físico y el numérico. Como resultados de esta tesis podemos enumerar las siguientes conclusiones. 1. El amortiguamiento y la masa añadida muestran una pequeña dependencia con la frecuencia pero una gran dependencia con la amplitud del movimiento. siendo coherente con investigaciones existentes. 2. Las medidas con la placa de cierre reforzada con cierre vertical en el borde, muestra un amortiguamiento significativamente menor comparada con la placa plana. Esto implica que para ensayos de canal es necesario incluir estos detalles en el modelo. 3. La masa añadida no muestra grandes variaciones comparando placa plana y placa con refuerzos. 4. Un coeficiente de amortiguamiento del 6% del crítico se puede considerar conservador para el cálculo en el dominio de la frecuencia. Este amortiguamiento es equivalente a un coeficiente de “drag” de 4 en elementos de Morison cuadráticos en las placas de cierre usadas en simulaciones en el dominio del tiempo. 5. Se han encontrado discrepancias en algunos valores de masa añadida y amortiguamiento de la placa plana al comparar con datos publicados. Se han propuesto algunas explicaciones basadas en las diferencias en la relación de espesores, en la distancia a la superficie libre y también relacionadas con efectos de escala. 6. La presión en la placa con refuerzos son similares a las de la placa plana, excepto en la zona del borde donde la placa con refuerzo vertical induce una gran diferencias de presiones entre la cara superior e inferior. 7. La máxima diferencia de presión escala coherentemente con la fuerza equivalente a la aceleración de la masa añadida distribuida sobre la placa. 8. Las masas añadidas calculadas con el código potencial (WADAM) no son suficientemente precisas, Este software no contempla el modelado de placas de pequeño espesor con dipolos, la poca precisión de los resultados aumenta la importancia de este tipo de elementos al realizar simulaciones con códigos potenciales para este tipo de plataformas que incluyen elementos de poco espesor. 9. Respecto al código CFD (Ansys CFX) la precisión de los cálculos es razonable para la placa plana, esta precisión disminuye para la placa con refuerzo vertical en el borde, como era de esperar dado la mayor complejidad del flujo. 10. Respecto al segundo orden, los resultados, en general, muestran que, aunque la tendencia en las fuerzas de segundo orden se captura bien con los códigos numéricos, se observan algunas reducciones en comparación con los datos experimentales. Las diferencias entre simulaciones y datos experimentales son mayores al usar la aproximación de Newman, que usa únicamente resultados de primer orden para el cálculo de las fuerzas de deriva media. 11. Es importante remarcar que las tendencias observadas en los resultados con modelo fijo cambiarn cuando el modelo este libre, el impacto que los errores en las estimaciones de fuerzas segundo orden tienen en el sistema de fondeo dependen de las condiciones ambientales que imponen las cargas ultimas en dichas líneas. En cualquier caso los resultados que se han obtenido en esta investigación confirman que es necesaria y deseable una detallada investigación de los métodos usados en la estimación de las fuerzas no lineales en las turbinas flotantes para que pueda servir de guía en futuros diseños de estos sistemas. Finalmente, el candidato espera que esta investigación pueda beneficiar a la industria eólica offshore en mejorar el diseño hidrodinámico del concepto semisumergible. ABSTRACT Electrical power obtained from floating offshore wind turbines is one of the promising resources which can reduce the fossil fuel energy consumption and cover worldwide energy demands. The concept is the most competitive in countries, such as Spain, where the continental shelf is narrow and does not provide space for fixed structures. Among the different floating structures concepts, this thesis has dealt with the semisubmersible one. Platforms of this kind may experience resonant motions both in surge and heave directions. In surge, since the platform natural period is long, such resonance can be excited with second order slow drift forces and may have substantial influence on mooring loads. In heave, first order forces can induce significant motion, whose damping is a crucial factor for the platform downtime. These two topics have been investigated in this thesis. To this aim, a design developed during HiPRWind EU project, has been selected as reference case study. The platform is composed of three cylindrical legs, linked together by a set of structural braces. The cylinders provide buoyancy and restoring forces and moments. Large circular heave plates have been attached to their bases. The design is similar to other documented in literature (e.g. Windfloat), which implies outcomes could have a general value. A large scale model of one of the legs has been built in order to study heave damping through forced oscillations. The final dimensions of the specimen (one meter diameter discs) make it, to the candidate’s knowledge, the largest for which data has been published. The model design allows for the fitting of either a plain solid heave plate or a flapped reinforced one; both have been built. The latter is a model scale reproduction of the prototype heave plate and includes some distinctive features, the most important being the inclusion of a vertical flap on its perimeter. The forced oscillation tests have been conducted for a range of frequencies and amplitudes, with both the solid plain model and the vertical flap one. Forces have been measured, from which added mass and damping coefficients have been obtained. These are necessary to accurately compute time-domain simulations of mooring design. The coefficients have been compared with literature, and potential flow and CFD predictions. In order to provide information for the structural design of the platform, pressure measurements on the top and bottom side of the heave discs have been recorded and pressure differences analyzed. In addition, in order to conduct a detailed investigation on the numerical estimations of the slow-drift forces of the HiPRWind platform, an experimental campaign involving captive (fixed) model tests of a model of the whole platform in bichromatic waves has been carried out. Although not reproducing the more realistic scenario, these tests allowed a preliminary verification of the numerical model based directly on the forces measured on the structure. The following outcomes can be enumerated: 1. Damping and added mass coefficients show, on one hand, a small dependence with frequency and, on the other hand, a large dependence with the motion amplitude, which is coherent with previously published research. 2. Measurements with the prototype plate, equipped with the vertical flap, show that damping drops significantly when comparing this to the plain one. This implies that, for tank tests of the whole floater and turbine, the prototype plate, equipped with the flap, should be incorporated to the model. 3. Added mass values do not suffer large alterations when comparing the plain plate and the one equipped with a vertical flap. 4. A conservative damping coefficient equal to 6% of the critical damping can be considered adequate for the prototype heave plate for frequency domain analysis. A corresponding drag coefficient equal to 4.0 can be used in time domain simulations to define Morison elements. 5. When comparing to published data, some discrepancies in added mass and damping coefficients for the solid plain plate have been found. Explanations have been suggested, focusing mainly on differences in thickness ratio and distance to the free surface, and eventual scale effects. 6. Pressures on the plate equipped with the vertical flap are similar in magnitude to those of the plain plate, even though substantial differences are present close to the edge, where the flap induces a larger pressure difference in the reinforced case. 7. The maximum pressure difference scales coherently with the force equivalent to the acceleration of the added mass, distributed over the disc surface. 8. Added mass coefficient values predicted with the potential solver (WADAM) are not accurate enough. The used solver does not contemplate modeling thin plates with doublets. The relatively low accuracy of the results highlights the importance of these elements when performing potential flow simulations of offshore platforms which include thin plates. 9. For the full CFD solver (Ansys CFX), the accuracy of the computations is found reasonable for the plain plate. Such accuracy diminishes for the disc equipped with a vertical flap, an expected result considering the greater complexity of the flow. 10. In regards to second order effects, in general, the results showed that, although the main trend in the behavior of the second-order forces is well captured by the numerical predictions, some under prediction of the experimental values is visible. The gap between experimental and numerical results is more pronounced when Newman’s approximation is considered, making use exclusively of the mean drift forces calculated in the first-order solution. 11. It should be observed that the trends observed in the fixed model test may change when the body is free to float, and the impact that eventual errors in the estimation of the second-order forces may have on the mooring system depends on the characteristics of the sea conditions that will ultimately impose the maximum loads on the mooring lines. Nevertheless, the preliminary results obtained in this research do confirm that a more detailed investigation of the methods adopted for the estimation of the nonlinear wave forces on the FOWT would be welcome and may provide some further guidance for the design of such systems. As a final remark, the candidate hopes this research can benefit the offshore wind industry in improving the hydrodynamic design of the semi-submersible concept.
Resumo:
La industria de la energía eólica marina ha crecido de forma significativa durante los últimos 15 años, y se espera que siga creciendo durante los siguientes. La construcción de torres en aguas cada vez más profundas y el aumento en potencia y tamaño de las turbinas han creado la necesidad de diseñar estructuras de soporte cada vez más fiables y optimizadas, lo que requiere un profundo conocimiento de su comportamiento. Este trabajo se centra en la respuesta dinámica de una turbina marina con cimentación tipo monopilote y sobre la que actúa la fuerza del viento. Se han realizado cálculos con distintas propiedades del suelo para cubrir un rango de rigideces que va desde una arena muy suelta a una muy densa. De este modo se ha analizado la influencia que tiene la rigidez del suelo en el comportamiento de la estructura. Se han llevado a cabo análisis estáticos y dinámicos en un modelo de elementos finitos implementado en Abaqus. El desplazamiento en la cabeza de la torre y la tensión en su base se han obtenido en función de la rigidez del suelo, y con ellos se ha calculado la amplificación dinámica producida cuando la frecuencia natural del sistema suelo‐cimentación torre se aproxima a la frecuencia de la carga. Dos diferentes enfoques a la hora de modelizar el suelo se han comparado: uno utilizando elementos continuos y otro utilizando muelles elásticos no lineales. Por último, un análisis de fiabilidad se ha llevado a cabo con un modelo analítico para calcular la probabilidad de resonancia del sistema, en el que se han considerado las propiedades de rigidez del suelo como variables aleatorias. Offshore wind energy industry has experienced a significant growth over the past 15 years, and it is expected to continue its growth in the coming years. The expansion to increasingly deep waters and the rise in power and size of the turbines have led to a need for more reliable and optimized support designs, which requires an extensive knowledge of the behaviour of these structures. This work focuses on the dynamic response of an offshore wind turbine founded on a monopile and subjected to wind loading. Different soil properties have been considered in order to cover the range of stiffness from a very loose to a very dense sand. In this way, the influence of stiffness on the structure behaviour has been assessed. Static and dynamic analyses have been carried out by means of a finite element model implemented in Abaqus. Head displacement and stress at the tower base have been obtained as functions of soil stiffness, and they have been used to calculate the dynamic amplification that is produced when the natural frequency of the system soil‐foundation‐tower approaches the load frequency. Two different approaches of soil modelling have been compared: soil modelled as a continuum and soil simulated with non linear elastic springs. Finally, a reliability analysis to assess the probability of resonance has been performed with an analytical model, in which soil stiffness properties are considered as stochastic variables.