3 resultados para Objective good faith
em Universidad Politécnica de Madrid
Resumo:
The construction industry, one of the most important ones in the development of a country, generates unavoidable impacts on the environment. The social demand towards greater respect for the environment is a high and general outcry. Therefore, the construction industry needs to reduce the impact it produces. Proper waste management is not enough; we must take a further step in environmental management, where new measures need to be introduced for the prevention at source, such as good practices to promote recycling. Following the amendment of the legal frame applicable to Construction and Demolition Waste (C&D waste), important developments have been incorporated in European and International laws, aiming to promote the culture of reusing and recycling. This change of mindset, that is progressively taking place in society, is allowing for the consideration of C&D waste no longer as an unusable waste, but as a reusable material. The main objective of the work presented in this paper is to enhance C&D waste management systems through the development of preventive measures during the construction process. These measures concern all the agents intervening in the construction process as only the personal implication of all of them can ensure an efficient management of the C&D waste generated. Finally, a model based on preventive measures achieves organizational cohesion between the different stages of the construction process, as well as promoting the conservation of raw materials through the use and waste minimization. All of these in order to achieve a C&D waste management system, whose primary goal is zero waste generation
Resumo:
In Video over IP services, perceived video quality heavily depends on parameters such as video coding and network Quality of Service. This paper proposes a model for the estimation of perceived video quality in video streaming and broadcasting services that combines the aforementioned parameters with other that depend mainly on the information contents of the video sequences. These fitting parameters are derived from the Spatial and Temporal Information contents of the sequences. This model does not require reference to the original video sequence so it can be used for online, real-time monitoring of perceived video quality in Video over IP services. Furthermore, this paper proposes a measurement workbench designed to acquire both training data for model fitting and test data for model validation. Preliminary results show good correlation between measured and predicted values.
Resumo:
The complexity of planning a wireless sensor network is dependent on the aspects of optimization and on the application requirements. Even though Murphy's Law is applied everywhere in reality, a good planning algorithm will assist the designers to be aware of the short plates of their design and to improve them before the problems being exposed at the real deployment. A 3D multi-objective planning algorithm is proposed in this paper to provide solutions on the locations of nodes and their properties. It employs a developed ray-tracing scheme for sensing signal and radio propagation modelling. Therefore it is sensitive to the obstacles and makes the models of sensing coverage and link quality more practical compared with other heuristics that use ideal unit-disk models. The proposed algorithm aims at reaching an overall optimization on hardware cost, coverage, link quality and lifetime. Thus each of those metrics are modelled and normalized to compose a desirability function. Evolutionary algorithm is designed to efficiently tackle this NP-hard multi-objective optimization problem. The proposed algorithm is applicable for both indoor and outdoor 3D scenarios. Different parameters that affect the performance are analyzed through extensive experiments; two state-of-the-art algorithms are rebuilt and tested with the same configuration as that of the proposed algorithm. The results indicate that the proposed algorithm converges efficiently within 600 iterations and performs better than the compared heuristics.