8 resultados para Objective element
em Universidad Politécnica de Madrid
Resumo:
When an automobile passes over a bridge dynamic effects are produced in vehicle and structure. In addition, the bridge itself moves when exposed to the wind inducing dynamic effects on the vehicle that have to be considered. The main objective of this work is to understand the influence of the different parameters concerning the vehicle, the bridge, the road roughness or the wind in the comfort and safety of the vehicles when crossing bridges. Non linear finite element models are used for structures and multibody dynamic models are employed for vehicles. The interaction between the vehicle and the bridge is considered by contact methods. Road roughness is described by the power spectral density (PSD) proposed by the ISO 8608. To consider that the profiles under right and left wheels are different but not independent, the hypotheses of homogeneity and isotropy are assumed. To generate the wind velocity history along the road the Sandia method is employed. The global problem is solved by means of the finite element method. First the methodology for modelling the interaction is verified in a benchmark. Following, the case of a vehicle running along a rigid road and subjected to the action of the turbulent wind is analyzed and the road roughness is incorporated in a following step. Finally the flexibility of the bridge is added to the model by making the vehicle run over the structure. The application of this methodology will allow to understand the influence of the different parameters in the comfort and safety of road vehicles crossing wind exposed bridges. Those results will help to recommend measures to make the traffic over bridges more reliable without affecting the structural integrity of the viaduct
Resumo:
The solution to the problem of finding the optimum mesh design in the finite element method with the restriction of a given number of degrees of freedom, is an interesting problem, particularly in the applications method. At present, the usual procedures introduce new degrees of freedom (remeshing) in a given mesh in order to obtain a more adequate one, from the point of view of the calculation results (errors uniformity). However, from the solution of the optimum mesh problem with a specific number of degrees of freedom some useful recommendations and criteria for the mesh construction may be drawn. For 1-D problems, namely for the simple truss and beam elements, analytical solutions have been found and they are given in this paper. For the more complex 2-D problems (plane stress and plane strain) numerical methods to obtain the optimum mesh, based on optimization procedures have to be used. The objective function, used in the minimization process, has been the total potential energy. Some examples are presented. Finally some conclusions and hints about the possible new developments of these techniques are also given.
Resumo:
Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.
Resumo:
The behaviour of the interface between the FRP and the concrete is the key factor controlling debonding failures in FRP-strengthened RC structures. This defect can cause reductions in static strength, structural integrity and the change in the dynamic behavior of the structure. The adverse effect on the dynamic behavior of the defects can be utilized as an effective means for identifying and assessing both the location and size of debonding at its earliest stages. The presence of debonding changes the structural dynamic characteristics and might be traced in modal parameters, dynamic strain and wave patterns etc. Detection of minor local defects, as those origin of a future debonding, requires working at high frequencies so that the wavelength of the excited is small and sensitive enough to detect local damage. The development of a spectral element method gives a large potential in high-frequency structural modeling. In contrast to the conventional finite element, since inertial properties are modeled exactly few elements are necessary to capture very accurate solutions at the highest frequencies in large regions. A wide variety of spectral elements have been developed for structural members over finite and semi-infinite regions. The objective of this paper is to develop a Spectral Finite Element Model to efficiently capture the behavior of intermediate debonding of a FRP strengthened RC beam during wave-based diagnostics.
Resumo:
We propose in this work a very simple torsion-free beam element capable of capturing geometrical nonlinearities. The simple formulation is objective and unconditionally con- vergent for geometrically nonlinear models with large displacements, in the traditional sense that guarantees more precise numerical solutions for finer discretizations. The formulation does not employ rotational degrees of freedom, can be applied to two and three-dimensional problems, and it is computationally very efficient.
Resumo:
En la presente tesis desarrollamos una estrategia para la simulación numérica del comportamiento mecánico de la aorta humana usando modelos de elementos finitos no lineales. Prestamos especial atención a tres aspectos claves relacionados con la biomecánica de los tejidos blandos. Primero, el análisis del comportamiento anisótropo característico de los tejidos blandos debido a las familias de fibras de colágeno. Segundo, el análisis del ablandamiento presentado por los vasos sanguíneos cuando estos soportan cargas fuera del rango de funcionamiento fisiológico. Y finalmente, la inclusión de las tensiones residuales en las simulaciones en concordancia con el experimento de apertura de ángulo. El análisis del daño se aborda mediante dos aproximaciones diferentes. En la primera aproximación se presenta una formulación de daño local con regularización. Esta formulación tiene dos ingredientes principales. Por una parte, usa los principios de la teoría de la fisura difusa para garantizar la objetividad de los resultados con diferentes mallas. Por otra parte, usa el modelo bidimensional de Hodge-Petruska para describir el comportamiento mesoscópico de los fibriles. Partiendo de este modelo mesoscópico, las propiedades macroscópicas de las fibras de colágeno son obtenidas a través de un proceso de homogenización. En la segunda aproximación se presenta un modelo de daño no-local enriquecido con el gradiente de la variable de daño. El modelo se construye a partir del enriquecimiento de la función de energía con un término que contiene el gradiente material de la variable de daño no-local. La inclusión de este término asegura una regularización implícita de la implementación por elementos finitos, dando lugar a resultados de las simulaciones que no dependen de la malla. La aplicabilidad de este último modelo a problemas de biomecánica se estudia por medio de una simulación de un procedimiento quirúrgico típico conocido como angioplastia de balón. In the present thesis we develop a framework for the numerical simulation of the mechanical behaviour of the human aorta using non-linear finite element models. Special attention is paid to three key aspects related to the biomechanics of soft tissues. First, the modelling of the characteristic anisotropic behaviour of the softue due to the collagen fibre families. Secondly, the modelling of damage-related softening that blood vessels exhibit when subjected to loads beyond their physiological range. And finally, the inclusion of the residual stresses in the simulations in accordance with the opening-angle experiment The modelling of damage is addressed with two major and different approaches. In the first approach a continuum local damage formulation with regularisation is presented. This formulation has two principal ingredients. On the one hand, it makes use of the principles of the smeared crack theory to avoid the mesh size dependence of the structural response in softening. On the other hand, it uses a Hodge-Petruska bidimensional model to describe the fibrils as staggered arrays of tropocollagen molecules, and from this mesoscopic model the macroscopic material properties of the collagen fibres are obtained using an homogenisation process. In the second approach a non-local gradient-enhanced damage formulation is introduced. The model is built around the enhancement of the free energy function by means of a term that contains the referential gradient of the non-local damage variable. The inclusion of this term ensures an implicit regularisation of the finite element implementation, yielding mesh-objective results of the simulations. The applicability of the later model to biomechanically-related problems is studied by means of the simulation of a typical surgical procedure, namely, the balloon angioplasty.
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Resumo:
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's of the new mesh remain constant and equal to the initial FE mesh. In order to find the mesh producing the minimum of the selected objective function the steepest descent gradient technique has been applied as optimization algorithm. However this efficient technique has the drawback that demands a large computation power. Extensive application of this methodology to different 2-D elasticity problems leads to the conclusion that isometric isostatic meshes (ii-meshes) produce better results than the standard reasonably initial regular meshes used in practice. This conclusion seems to be independent on the objective function used for comparison. These ii-meshes are obtained by placing FE nodes along the isostatic lines, i.e. curves tangent at each point to the principal direction lines of the elastic problem to be solved and they should be regularly spaced in order to build regular elements. That means ii-meshes are usually obtained by iteration, i.e. with the initial FE mesh the elastic analysis is carried out. By using the obtained results of this analysis the net of isostatic lines can be drawn and in a first trial an ii-mesh can be built. This first ii-mesh can be improved, if it necessary, by analyzing again the problem and generate after the FE analysis the new and improved ii-mesh. Typically, after two first tentative ii-meshes it is sufficient to produce good FE results from the elastic analysis. Several example of this procedure are presented.