20 resultados para OPTIMAL CONTROL

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient approach is presented to improve the local and global approximation and modelling capability of Takagi-Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy. The main problem is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the use of the T-S method because this type of membership function has been widely used during the last two decades in the stability, controller design and are popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S method with optimized performance in approximating nonlinear functions. A simple approach with few computational effort, based on the well known parameters' weighting method is suggested for tuning T-S parameters to improve the choice of the performance index and minimize it. A global fuzzy controller (FC) based Linear Quadratic Regulator (LQR) is proposed in order to show the effectiveness of the estimation method developed here in control applications. Illustrative examples of an inverted pendulum and Van der Pol system are chosen to evaluate the robustness and remarkable performance of the proposed method and the high accuracy obtained in approximating nonlinear and unstable systems locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a fuzzy optimal control for stabilizing an upright position a double inverted pendulum (DIP) is developed and compared. Modeling is based on Euler-Lagrange equations. This results in a complicated nonlinear fast reaction, unstable multivariable system. Firstly, the mathematical models of double pendulum system are presented. The weight variable fuzzy input is gained by combining the fuzzy control theory with the optimal control theory. Simulation results show that the controller, which the upper pendulum is considered as main control variable, has high accuracy, quick convergence speed and higher precision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a fuzzy feedback linearization is used to control nonlinear systems described by Takagi-Suengo (T-S) fuzzy systems. In this work, an optimal controller is designed using the linear quadratic regulator (LQR). The well known weighting parameters approach is applied to optimize local and global approximation and modelling capability of T-S fuzzy model to improve the choice of the performance index and minimize it. The approach used here can be considered as a generalized version of T-S method. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the proposed optimal LQR algorithm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper addresses the problem of optimal constant continuous low-thrust transfer in the context of the restricted two-body problem (R2BP). Using the Pontryagin’s principle, the problem is formulated as a two point boundary value problem (TPBVP) for a Hamiltonian system. Lie transforms obtained through the Deprit method allow us to obtain the canonical mapping of the phase flow as a series in terms of the order of magnitude of the thrust applied. The reachable set of states starting from a given initial condition using optimal control policy is obtained analytically. In addition, a particular optimal transfer can be computed as the solution of a non-linear algebraic equation. Se investiga el uso de series y transformadas de Lie en problemas de optimización de trayectorias de satélites impulsados por motores de bajo empuje

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past few years, the common practice within air traffic management has been that commercial aircraft fly by following a set of predefined routes to reach their destination. Currently, aircraft operators are requesting more flexibility to fly according to their prefer- ences, in order to achieve their business objectives. Due to this reason, much research effort is being invested in developing different techniques which evaluate aircraft optimal trajectory and traffic synchronisation. Also, the inefficient use of the airspace using barometric altitude overall in the landing and takeoff phases or in Continuous Descent Approach (CDA) trajectories where currently it is necessary introduce the necessary reference setting (QNH or QFE). To solve this problem and to permit a better airspace management born the interest of this research. Where the main goals will be to evaluate the impact, weakness and strength of the use of geometrical altitude instead of the use of barometric altitude. Moreover, this dissertation propose the design a simplified trajectory simulator which is able to predict aircraft trajectories. The model is based on a three degrees of freedom aircraft point mass model that can adapt aircraft performance data from Base of Aircraft Data, and meteorological information. A feature of this trajectory simulator is to support the improvement of the strategic and pre-tactical trajectory planning in the future Air Traffic Management. To this end, the error of the tool (aircraft Trajectory Simulator) is measured by comparing its performance variables with actual flown trajectories obtained from Flight Data Recorder information. The trajectory simulator is validated by analysing the performance of different type of aircraft and considering different routes. A fuel consumption estimation error was identified and a correction is proposed for each type of aircraft model. In the future Air Traffic Management (ATM) system, the trajectory becomes the fundamental element of a new set of operating procedures collectively referred to as Trajectory-Based Operations (TBO). Thus, governmental institutions, academia, and industry have shown a renewed interest for the application of trajectory optimisation techniques in com- mercial aviation. The trajectory optimisation problem can be solved using optimal control methods. In this research we present and discuss the existing methods for solving optimal control problems focusing on direct collocation, which has received recent attention by the scientific community. In particular, two families of collocation methods are analysed, i.e., Hermite-Legendre-Gauss-Lobatto collocation and the pseudospectral collocation. They are first compared based on a benchmark case study: the minimum fuel trajectory problem with fixed arrival time. For the sake of scalability to more realistic problems, the different meth- ods are also tested based on a real Airbus 319 El Cairo-Madrid flight. Results show that pseudospectral collocation, which has shown to be numerically more accurate and computa- tionally much faster, is suitable for the type of problems arising in trajectory optimisation with application to ATM. Fast and accurate optimal trajectory can contribute properly to achieve the new challenges of the future ATM. As atmosphere uncertainties are one of the most important issues in the trajectory plan- ning, the final objective of this dissertation is to have a magnitude order of how different is the fuel consumption under different atmosphere condition. Is important to note that in the strategic phase planning the optimal trajectories are determined by meteorological predictions which differ from the moment of the flight. The optimal trajectories have shown savings of at least 500 [kg] in the majority of the atmosphere condition (different pressure, and temperature at Mean Sea Level, and different lapse rate temperature) with respect to the conventional procedure simulated at the same atmosphere condition.This results show that the implementation of optimal profiles are beneficial under the current Air traffic Management (ATM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the framework of cost-effective patterning processes a novel technique that saves photolithographic processing steps, easily scalable to wide area production, is proposed. It consists of a tip-probe, which is biased with respect to a conductive substrate and slides on it, keeping contact with the material. The sliding tip leaves an insulating path (which currently is as narrow as 30 μm) across the material, which enables the drawing of tracks and pads electrically insulated from the surroundings. This ablation method, called arc-erosion, requires an experimental set up that had to be customized for this purpose and is described. Upon instrumental monitoring, a brief proposal of the physics below this process is also presented. As a result an optimal control of the patterning process has been acquired. The system has been used on different substrates, including indium tin oxide either on glass or on polyethylene terephtalate, as well as alloys like Au/Cr, and Al. The influence of conditions such as tip speed and applied voltage is discussed

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we review some earlier distributed algorithms developed by the authors and collaborators, which are based on two different approaches, namely, distributed moment estimation and distributed stochastic approximations. We show applications of these algorithms on image compression, linear classification and stochastic optimal control. In all cases, the benefit of cooperation is clear: even when the nodes have access to small portions of the data, by exchanging their estimates, they achieve the same performance as that of a centralized architecture, which would gather all the data from all the nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente investigación parte del problema en las zonas de clima cálido - húmedo en las cuales se producen impactos asociados a la incomodidad térmica producto de la intensa radiación solar, altas temperaturas y elevada humedad. Estos factores reducen la calidad de los espacios abiertos y desarrollan en la población una actitud de rechazo hacia el uso del microespacio urbano entre edificaciones en los desarrollos urbanos - conjuntos urbanos - , los mismos frecuentemente admiten soluciones que al parecer no contribuyen a la realización de las actividades comunes de esparcimiento de la población residente. Por lo tanto, el objetivo de la investigación es profundizar en la temática urbano - ambiental - social y el diseño urbano vinculada a la particularidad morfológica local, las condiciones microclimáticas, el uso del microespacio y los requerimientos de los usuarios. La finalidad de desarrollar estrategias de control microclimático del microespacio entre edificios en clima cálido - húmedo en búsqueda de soluciones óptimas que satisfagan las necesidades de los usuarios de los espacios exteriores en estas áreas residenciales. La investigación se centra en el estudio de las particularidades contextuales relacionadas con el microclima y las características urbanas - morfotipológicas, básicamente los factores microclimáticos (soleamiento y ventilación), los morfológicos y edificatorios y las características de las superficies (pavimentos). En coherencia con el objetivo propuesto el trabajo se desarrolla en cuatro fases: la primera aborda la revisión documental, literatura relevante e investigaciones relativas a la calidad ambiental, medio social, medio físico, el microespacio urbano, control y diseño sostenible, modelización proyectual y estrategias sostenibles; la segunda fase se refiere al marco contextual, características urbanas, datos climáticos locales, planes y procesos urbanos, tipologías y conformación urbana. En esta fase se describe el proceso de selección, análisis y evaluación urbano - ambiental de los casos de estudio (conjuntos residenciales). En la tercera fase se aborda el marco evaluativo y estudio de casos, consideraciones físicas, climáticas y valoración térmico - ambiental de los conjuntos residenciales seleccionados. En esta fase se aplican Técnicas Estadísticas y de Simulación Computacional y se analizan los resultados obtenidos. Finalmente, la cuarta fase propositiva incluye el establecimiento de Estrategias, Principios y Lineamientos de optimación térmica y se exponen las Conclusiones parciales de la tesis, alcances y perspectivas futuras. Finalmente, los resultados obtenidos en la investigación demuestran que el análisis en las experiencias de la realidad permiten comprobar que las situaciones y alteraciones ambientales sustanciales, los niveles de afectación térmica y las condiciones de confortabilidad e impacto derivan de las características urbanas, los componentes del microespacio y de las condiciones climáticas las cuales afectan el desarrollo de las actividades y el uso efectivo del microespacio entre edificios. El análisis de los factores morfo - climáticos incidentes y el estudio de los efectos de interacción contribuyen al establecimiento de Principios y Lineamientos para la evaluación y diseño sostenible del microespacio entre edificios y el uso correcto de los elementos del clima en estas áreas urbanas destinadas a la actividad social y al esparcimiento de la población residente. ABSTRACT This research starts from the problem of hot - humid climate zones where impacts related to thermal discomfort are produced as a result from the intense solar radiation and high temperatures and humidity. These factors reduce the quality of open spaces and people develop an attitude of rejection towards the use of urban microspace among buildings within urban developments - urban complexes - . Usually, these complexes admit solutions that apparently do not contribute to the achievement of common leisure activities in the resident dwellers. Therefore, the main purpose of this research is to deepen in the urban - environmental - social issue and urban design linked to the local morphological particularity, microclimate conditions, use of microspace and users’ requirements. In order to develop microclimate control strategies of microspace among buildings in hot - humid climate to look for optimal solutions that satisfy users’ needs of outdoors spaces in these residential areas. The research focuses in the study of contextual particularities related to microclimate and urban - morphotypological characteristics. Basically, microclimate (sunlight and ventilation), morphological and building factors as well as road surface characteristics. According to the proposed objective, this research is developed in four phases: the first one considers documentary review, relevant literature and researches related to environmental quality, social environment, physical environment, urban microspace, control and sustainable design, project modelling and sustainable strategies; while the second phase refers to contextual framework, urban characteristics, local climate data, plans and urban processes, typologies and urban structure. In this phase, the process of selection, analysis and urban - environmental evaluation of case studies (residential complexes) is described. The third phase approaches the assessment framework and case studies, physical and climate considerations as well as environmental - thermal evaluation of selected residential complexes. In this phase, statistical techniques and computational simulations are applied. Likewise, results obtained are analysed. Similarly, fourth and proposing phase includes the establishment of strategies, principles and guidelines of thermal optimization and partial conclusions of the thesis, scopes and future perspectives are exposed. Finally, from the results obtained, it is demonstrated that the analysis on reality experiences allow proving that situations and substantial environmental changes, levels of thermal affectations, comfort conditions and impact derive from urban characteristics, microspace components and from climate conditions which affect the development of activities and the effective use of microspace among buildings. The analysis of incidental morpho - climate factors and the study of interaction effects contribute to the establishment of principles and guidelines for the assessment and sustainable design of microspace among buildings as well as the correct use of climate elements in these urban areas oriented to social and leisure activities of resident population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present an optimized fuzzy visual servoing system for obstacle avoidance using an unmanned aerial vehicle. The cross-entropy theory is used to optimise the gains of our controllers. The optimization process was made using the ROS-Gazebo 3D simulation with purposeful extensions developed for our experiments. Visual servoing is achieved through an image processing front-end that uses the Camshift algorithm to detect and track objects in the scene. Experimental flight trials using a small quadrotor were performed to validate the parameters estimated from simulation. The integration of crossentropy methods is a straightforward way to estimate optimal gains achieving excellent results when tested in real flights.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El origen del proyecto se encuentra en la mejora de un inversor trifásico sinusoidal comercial sobre la base del estudio de las técnicas de excitación óptimas para los IGBTs que lo componen en su etapa de potencia. En las primeras fases de planteamiento del proyecto se propone una idea mucho más ambiciosa, la realización de un nuevo convertidor de emergencia, destinado al sector ferroviario, para dar servicio de climatización. Este convertidor está formado por la asociación en cascada de un bloque DC/DC elevador y un bloque inversor DC/AC trifásico controlado mediante PWM con modulación sinusoidal. Se pretendía así dar solución a las siguientes problemáticas detectadas en los convertidores comercializados hasta el momento: un bloque elevador excesivamente sobredimensionado, subsistemas de control independientes para los dos bloques que configuran el convertidor, adicionalmente, la tarjeta driver se rediseña con cada cambio de especificaciones por parte de un nuevo cliente y finalmente, las comunicaciones tanto de diagnosis como de mantenimiento necesitaban una importante actualización. Inicialmente, se ha realizado un estudio teórico de los bloques elevador e inversor para poder realizar el diseño y dimensionamiento de sus componentes tanto semiconductores como electromagnéticos. Una vez completada la parte de potencia, se estudia el control que se realiza mediante medidas directas y simulación tanto de la estrategia de control del elevador como del inversor. Así se obtiene una información completa de la funcionalidad de las tarjetas existentes. Se desea realizar el diseño de una única tarjeta controladora y una única tarjeta de drivers para ambos bloques. Por problemas ajenos, en el transcurso de este proyecto se cancela su realización comercial, con lo que se decide al menos crear la placa de control y poder gobernar un convertidor ya existente, sustituyendo la tarjeta de control del bloque elevador. Para poder fabricar la placa de control se divide en dos tarjetas que irán conectadas en modo sándwich. En una tarjeta está el microcontrolador y en otra está todo el interface necesario para operar con el sistema: entradas y salidas digitales, entradas y salidas analógicas, comunicación CAN, y un pequeño DC/DC comercial que proporciona alimentación al prototipo. Se realiza un pequeño programa funcional para poder manejar el convertidor, el cual con una tensión de 110V DC, proporciona a la salida una tensión de 380V AC. Como ya se ha expuesto, debido a la cancelación del proyecto industrial no se profundiza más en su mejora y se decide proponerlo para su evaluación en su fase actual. ABSTRACT. The beginning of the project is found in the improvement of a commercial sine wave three phase inverter which is based in a study about optimal excitation techniques to IGBTs which compose in the power stage. In the early phases of project it is proposed a much more ambitious idea, the fact of a new emergency converter, proposed for the rail sector to work in an air condition unit. This converter is formed by an association of a block cascaded DC/DC booster and a block DC/AC inverter three-phase controlled by a sine wave modulation PWM. The purposed was to give a solution to following problems detected in commercial converters nowadays: an excessively oversized block boost, independent control subsystems for two blocks that configure the converter. In addition, driver board is redesigned with each specifications change demand it a new customer, and finally, the communications, diagnostic and maintenance that needed a important upgrade. Initially, it has been performed a theoretical study of boost and the inverter blocks to be able to perform the component’s design and the size (semiconductor and electromagnetic fields). Once finished power study, it is analysed the control performed using direct measures and simulation of boost control strategy and inverter. With this it is obtained complete information about existing cards functionality. The project is looking for the design of just one controller card and one drivers´ card for both blocks. By unrelated problems, during the course of this project a commercial realization. So at least its decided to create control board to be able to existing converter, replacing boost block’s control board. To be able to manufacture control board it is divided in two cards connected in sandwiching mode. In a card is microcontroller and in another is all needed interface to operate with the system: digital inputs and outputs, analogical inputs and outputs, CAN communication, and a small DC / DC business that provide power supply to the prototype. It is performed a small functional program to handle the converter, which with an input voltage 110V DC provides an output voltage 380V AC. As already has been exposed, due to industrial project cancellation it is decided no to continue with all improvements and directly to evaluate it in the current phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flash floods are of major relevance in natural disaster management in the Mediterranean region. In many cases, the damaging effects of flash floods can be mitigated by adequate management of flood control reservoirs. This requires the development of suitable models for optimal operation of reservoirs. A probabilistic methodology for calibrating the parameters of a reservoir flood control model (RFCM) that takes into account the stochastic variability of flood events is presented. This study addresses the crucial problem of operating reservoirs during flood events, considering downstream river damages and dam failure risk as conflicting operation criteria. These two criteria are aggregated into a single objective of total expected damages from both the maximum released flows and stored volumes (overall risk index). For each selected parameter set the RFCM is run under a wide range of hydrologic loads (determined through Monte Carlo simulation). The optimal parameter set is obtained through the overall risk index (balanced solution) and then compared with other solutions of the Pareto front. The proposed methodology is implemented at three different reservoirs in the southeast of Spain. The results obtained show that the balanced solution offers a good compromise between the two main objectives of reservoir flood control management

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reducing the energy consumption for computation and cooling in servers is a major challenge considering the data center energy costs today. To ensure energy-efficient operation of servers in data centers, the relationship among computa- tional power, temperature, leakage, and cooling power needs to be analyzed. By means of an innovative setup that enables monitoring and controlling the computing and cooling power consumption separately on a commercial enterprise server, this paper studies temperature-leakage-energy tradeoffs, obtaining an empirical model for the leakage component. Using this model, we design a controller that continuously seeks and settles at the optimal fan speed to minimize the energy consumption for a given workload. We run a customized dynamic load-synthesis tool to stress the system. Our proposed cooling controller achieves up to 9% energy savings and 30W reduction in peak power in comparison to the default cooling control scheme.