34 resultados para OAIS reference model for an open archival information system
em Universidad Politécnica de Madrid
Resumo:
Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
This contribution presents results of an incompressible two-dimensional flow over an open cavity of fixed aspect ratio (length/depth) L/D = 2 and the coupling between the three dimensional low frequency oscillation mode confined in the cavity and the wave-like disturbances evolving on the downstream wall of the cavity in the form of Tollmien-Schlichting waves. BiGlobal instability analysis is conducted to search the global disturbances superimposed upon a two-dimensional steady basic flow. The base solution is computed by the integration of the laminar Navier-Stokes equations in primitive variable formulation, while the eigenvalue problem (EVP) derived from the discretization of the linearized equations of motion in the BiGlobal framework is solved using an iterative procedure. The formulation of the BiGlobal EVP for the unbounded flow in the open cavity problem introduces additional difficulties regarding the flow-through boundaries. Local analysis has been utilized for the determination of the proper boundary conditions in the upper limit of the downstream region
Resumo:
This dissertation, whose research has been conducted at the Group of Electronic and Microelectronic Design (GDEM) within the framework of the project Power Consumption Control in Multimedia Terminals (PCCMUTE), focuses on the development of an energy estimation model for the battery-powered embedded processor board. The main objectives and contributions of the work are summarized as follows: A model is proposed to obtain the accurate energy estimation results based on the linear correlation between the performance monitoring counters (PMCs) and energy consumption. the uniqueness of the appropriate PMCs for each different system, the modeling methodology is improved to obtain stable accuracies with slight variations among multiple scenarios and to be repeatable in other systems. It includes two steps: the former, the PMC-filter, to identify the most proper set among the available PMCs of a system and the latter, the k-fold cross validation method, to avoid the bias during the model training stage. The methodology is implemented on a commercial embedded board running the 2.6.34 Linux kernel and the PAPI, a cross-platform interface to configure and access PMCs. The results show that the methodology is able to keep a good stability in different scenarios and provide robust estimation results with the average relative error being less than 5%. Este trabajo fin de máster, cuya investigación se ha desarrollado en el Grupo de Diseño Electrónico y Microelectrónico (GDEM) en el marco del proyecto PccMuTe, se centra en el desarrollo de un modelo de estimación de energía para un sistema empotrado alimentado por batería. Los objetivos principales y las contribuciones de esta tesis se resumen como sigue: Se propone un modelo para obtener estimaciones precisas del consumo de energía de un sistema empotrado. El modelo se basa en la correlación lineal entre los valores de los contadores de prestaciones y el consumo de energía. Considerando la particularidad de los contadores de prestaciones en cada sistema, la metodología de modelado se ha mejorado para obtener precisiones estables, con ligeras variaciones entre escenarios múltiples y para replicar los resultados en diferentes sistemas. La metodología incluye dos etapas: la primera, filtrado-PMC, que consiste en identificar el conjunto más apropiado de contadores de prestaciones de entre los disponibles en un sistema y la segunda, el método de validación cruzada de K iteraciones, cuyo fin es evitar los sesgos durante la fase de entrenamiento. La metodología se implementa en un sistema empotrado que ejecuta el kernel 2.6.34 de Linux y PAPI, un interfaz multiplataforma para configurar y acceder a los contadores. Los resultados muestran que esta metodología consigue una buena estabilidad en diferentes escenarios y proporciona unos resultados robustos de estimación con un error medio relativo inferior al 5%.
Resumo:
Aplicación de simulación de Monte Carlo y técnicas de Análisis de la Varianza (ANOVA) a la comparación de modelos estocásticos dinámicos para accidentes de tráfico.
Resumo:
EU biofuels support Biofuels modelling with CAPRI Scenario setting Main results Concluding remarks Biofuels production and use will remain mainly driven by public support Strong links of biofuels to agricultural markets Development of second generation technologies would ease food-fuel links
Resumo:
This paper will present an open-source simulation tool, which is being developed in the frame of an European research project1. The tool, whose final version will be freely available through a website, allows the modelling and the design of different types of grid-connected PV systems, such as large grid-connected plants and building-integrated installations. The tool is based on previous software developed by the IES-UPM2, whose models and energy losses scenarios have been validated in the commissioning of PV projects3 carried out in Spain, Portugal, France and Italy, whose aggregated capacity is nearly 300MW. This link between design and commissioning is one of the key points of tool presented here, which is not usually addressed by present commercial software. The tool provides, among other simulation results, the energy yield, the analysis and breakdown of energy losses, and the estimations of financial returns adapted to the legal and financial frameworks of each European country. Besides, educational facilities will be developed and integrated in the tool, not only devoted to learn how to use this software, but also to train the users on the best design PV systems practices. The tool will also include the recommendation of several PV community experts, which have been invited to identify present necessities in the field of PV systems simulation. For example, the possibility of using meteorological forecasts as input data, or modelling the integration of large energy storage systems, such as vanadium redox or lithium-ion batteries. Finally, it is worth mentioning that during the verification and testing stages of this software development, it will be also open to the suggestions received from the different actors of the PV community, such as promoters, installers, consultants, etc.
Resumo:
This paper presents the SAILSE Project (Sistema Avanzado de Información en Lengua de Signos Española ? Spanish Sign Language Advanced Information System). This project aims to develop an interactive system for facilitating the communication between a hearing and a deaf person. The first step has been the linguistic study, including a sentence collection, its translation into LSE (Lengua de Signos Española - Spanish Sign Language), and sign generation. After this analysis, the paper describes the interactive system that integrates an avatar to represent the signs, a text to speech converter and several translation technologies. Finally, this paper presents the set up carried out with deaf people and the main conclusions extracted from it.
Resumo:
An Eulerian multifluid model is used to describe the evolution of an electrospray plume and the flow induced in the surrounding gas by the drag of the electrically charged spray droplets in the space between an injection electrode containing the electrospray source and a collector electrode. The spray is driven by the voltage applied between the two electrodes. Numerical computations and order-of-magnitude estimates for a quiescent gas show that the droplets begin to fly back toward the injection electrode at a certain critical value of the flux of droplets in the spray, which depends very much on the electrical conditions at the injection electrode. As the flux is increased toward its critical value, the electric field induced by the charge of the droplets partially balances the field due to the applied voltage in the vicinity of the injection electrode, leading to a spray that rapidly broadens at a distance from its origin of the order of the stopping distance at which the droplets lose their initial momentum and the effect of their inertia becomes negligible. The axial component of the electric field first changes sign in this region, causing the fly back. The flow induced in the gas significantly changes this picture in the conditions of typical experiments. A gas plume is induced by the drag of the droplets whose entrainment makes the radius of the spray away from the injection electrode smaller than in a quiescent gas, and convects the droplets across the region of negative axial electric field that appears around the origin of the spray when the flux of droplets is increased. This suppresses fly back and allows much higher fluxes to be reached than are possible in a quiescent gas. The limit of large droplet-to-gas mass ratio is discussed. Migration of satellite droplets to the shroud of the spray is reproduced by the Eulerian model, but this process is also affected by the motion of the gas. The gas flow preferentially pushes satellite droplets from the shroud to the core of the spray when the effect of the inertia of the droplets becomes negligible, and thus opposes the well-established electrostatic/inertial mechanism of segregation and may end up concentrating satellite droplets in an intermediate radial region of the spray.
Resumo:
Innovation has been identified as the single most relevant element in fuelling corporations’ competitive advantage and ultimate value creation. Corporations no longer rely on a single, linear structure of innovation; the new paradigm of open innovation opens up new possibilities of organizing innovation within the ecosystem, thus giving rise to new drivers for value creation. These value drivers have an impact on the strategic position of the firm and have the ability to create superior financial performance. In this paper we explore the close relationship between open innovation and value creation and propose a framework to analyze this process as well as the most critical elements involved.
Resumo:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.
Resumo:
In this paper, the authors introduce a novel mechanism for data management in a middleware for smart home control, where a relational database and semantic ontology storage are used at the same time in a Data Warehouse. An annotation system has been designed for instructing the storage format and location, registering new ontology concepts and most importantly, guaranteeing the Data Consistency between the two storage methods. For easing the data persistence process, the Data Access Object (DAO) pattern is applied and optimized to enhance the Data Consistency assurance. Finally, this novel mechanism provides an easy manner for the development of applications and their integration with BATMP. Finally, an application named "Parameter Monitoring Service" is given as an example for assessing the feasibility of the system.
Resumo:
Energy Efficiency is one of the goals of the Smart Building initiatives. This paper presents an Open Energy Management System which consists of an ontology-based multi-technology platform and a wireless transducer network using 6LoWPAN communication technology. The system allows the integration of several building automation protocols and eases the development of different kind of services to make use of them. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
Improving energy efficiency in buildings is one of the goals of the Smart City initiatives and a challenge for the European Union. This paper presents a 6LoWPAN wireless transducer network (BatNet) as part of an open energy management system. This network has been designed to operate in buildings, to collect environmental information (temperature, humidity, illumination and presence) and electrical consumption in real time (voltage, current and power factor). The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.