7 resultados para Nutrient Control

em Universidad Politécnica de Madrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of inclusion of pea hulls (PH) in the diet on growth performance, development of the gastrointestinal tract and nutrient retention were studied in broilers from 1 to 18d of age. There were a control diet based on low fibre ingredients (69.3 total dietary fibre (16.1g crude fibre/kg)) and three additional diets that resulted from the dilution of the basal diet with 25, 50 and 75g PH/kg (81.2, 93.2, and 105.1g total dietary fibre/kg diet, respectively). Each treatment was replicated six times and the experimental unit was a cage with 12 chicks. Growth performance, development of the gastrointestinal tract and the coefficients of total tract apparent retention (CTTAR) of nutrients were recorded at 6, 12 and 18d of age. In addition, jejunal morphology was measured at 12 and 18d and the coefficients of apparent ileal digestibility (CAID) of nutrients at 18d of age. Pea hulls inclusion affected all the parameters studied. The inclusion of 25 and 50g PH/kg diet improved growth performance as compared to the control diet. The relative weight (g/kg body weight) of proventriculus (P≤0.01), gizzard (P≤0.001) and ceca (P≤0.05) increased linearly as the level of PH in the diet increased. The inclusion of PH affected quadratically (P≤0.01) villus height:crypt depth ratio with the highest value shown at 25g PH/kg. In general, the CTTAR and CAID of nutrients increased linearly and quadratically (P≤0.05) with increasing levels of PH, showing maximum values with PH level between 25 and 50g/kg diet. We conclude that the size of the digestive organs increases with increasing levels of PH in the diet. In general, the best performance and nutrient digestibility values were observed with levels of PH within the range of 25 and 50g/kg. Therefore, young broilers have a requirement for a minimum amount of dietary fibre. When pea hulls are used as a source of fibre, the level of total dietary fibre required for optimal performance is within the range of 81.2–93.2g/kg diet (25.6–35.0g crude fibre/kg diet). An excess of total dietary fibre (above 93.2g/kg diet) might reduce nutrient digestibility and growth performance to values similar to those observed with the control diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After an experimental fire in steep shrub land in a temperate–humid region (north-west Spain), the effects of two post-fire stabilisation treatments (grass seeding and straw mulching) on the chemical properties of eroded sediments,and the amount of nutrients lost with them, we reevaluated relative to control burnt soil, over a period of 13 months. Total C and N concentrations, and d 13 C, indicated that sediments were mainly contributed by charred plant and litter material. The highest concentrations of extractable base cations in the sediments occurred during the first 3 months following fire, especially for Na and K. As treatments had little or no effect on nutrient concentration in sediments, differences in nutrient losses were due to the 10-fold lower sediment production in mulching compared with other treatments. In control and seeding treatments, the accumulated amounts of nutrients lost with sediments were 989–1028kgha 1 (C), 77kgha 1 (N), 1.9–2.4kgha 1 (Ca), 0.9–1.1kgha 1 (Mg), 0.48–0.55kgha 1 (NH 4 þ –N), 0.39–0.56kgha 1 (K), 0.19–0.34kgha 1 (Na) and , 0.1kgha 1 (P and NO 3 –N) . These values accounted for 22–25% (total C and N) and 5–12% (NH 4 þ –N, Ca, P and Mg) of available nutrients in ash, and 1.0–2.4% of those in ash þ topsoil. As nutrient and sediment losses were strongly correlated, the reduction of the latter by mulching application leads to an effective decrease of post-fire nutrient losses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P) are interlinked by primary production, respiration and decomposition in terrestrial ecosystems. It has been suggested that the C, N and P cycles could become uncoupled under rapid climate change because of the different degrees of control exerted on the supply of these elements by biological and geochemical processes. Climatic controls on biogeochemical cycles are particularly relevant in arid, semi-arid and dry sub-humid ecosystems (drylands) because their biological activity is mainly driven by water availability. The increase in aridity predicted for the twenty-first century in many drylands worldwide may therefore threaten the balance between these cycles, differentially affecting the availability of essential nutrients. Here we evaluate how aridity affects the balance between C, N and P in soils collected from 224 dryland sites from all continents except Antarctica. We find a negative effect of aridity on the concentration of soil organic C and total N, but a positive effect on the concentration of inorganic P. Aridity is negatively related to plant cover, which may favour the dominance of physical processes such as rock weathering, a major source of P to ecosystems, over biological processes that provide more C and N, such as litter decomposition. Our findings suggest that any predicted increase in aridity with climate change will probably reduce the concentrations of N and C in global drylands, but increase that of P. These changes would uncouple the C, N and P cycles in drylands and could negatively affect the provision of key services provided by these ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of inclusion in the diet of different sources of soya bean meal (SBM) on growth performance, total tract apparent digestibility (TTAD) and apparent ileal digestibility (AID) of major dietary components and mucosal ileum morphology were studied in Iberian pigs weaned at 30 days of age. From 30 to 51 days of age (phase I), there was a control diet based on regular soya bean meal (R-SBM; 44% CP) of Argentina (ARG) origin and five extra diets in which a high-protein soya bean meal (HP-SBM; 49% CP) of the USA or ARG origin, either ground (990 μm) or micronized (60 μm), or a soya protein concentrate (SPC; 65% CP) substituted the R-SBM. From 51 to 61 days of age (phase II), all pigs were fed a common commercial diet in mash form. The following pre-planned orthogonal contrasts were conducted: (1) R-SBM v. all the other diets, (2) SPC v. all the HP-SBM diets, (3) micronized HP-SBM v. ground HP-SBM, (4) HP-SBM of ARG origin v. HP-SBM of US origin and (5) interaction between source and the degree of grinding of the HP-SBM. Dietary treatment did not affect growth performance of the pigs at any age but from 30 to 51 days of age, post weaning diarrhoea (PWD) was higher (P<0.001) and the TTAD and AID of all nutrients were lower for pigs fed the R-SBM diet than for pigs fed the HP-SBM or the SPC diets. However, no differences between the HP-SBM and the SPC containing diets were detected for any trait. The TTAD of organic matter (P=0.07) and gross energy (GE) (P=0.05) tended to be higher for the micronized HP-SBM than for the ground HP-SBM and that of GE was higher (P<0.05) for US meal than for the ARG meal. Pigs fed R-SBM had lower villus height (P<0.01) than pigs fed HP-SBM or SPC but no differences in ileal mucosal morphology were detected between SPC and HP-SBM containing diets. It is concluded that feeding the HP-SBM or SPC-reduced PWD and improved nutrient digestibility and ileal morphology as compared with feeding the R-SBM, but had no effect on pig performance. The inclusion in the diet of added value soya products (micronized SBM or SPC) in substitution of the R-SBM increased the TTAD of all nutrients and reduced PWD but had no advantage in terms of growth performance over the use of ground HP-SBM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Spain, large quantities of wine are produced every year (3,339,700 tonnes in 2011) (FAO, 2011) with the consequent waste generation. During the winemaking process, solid residues like grape stalks are generated, as well as grape marc and wine lees as by-products. According to the Council Regulation (EC) 1493/1999 on the common organization of the wine market, by-products coming from the winery industry must be sent to alcohol-distilleries to generate exhausted grape marc and vinasses. With an adequate composting treatment, these wastes can be applied to soils as a source of nutrients and organic matter. A three-year field experiment (2011, 2012 and 2013) was carried out in Ciudad Real (central Spain) to study the effects of wine-distillery waste compost application in a melon crop (Cucumis melo L.). Melon crop has been traditionally cultivated in this area with high inputs of water and fertilizers, but no antecedents of application of winery wastes are known. In a randomized complete block design, four treatments were compared: three compost doses consisted of 6.7 (D1), 13.3 (D2) and 20 t compost ha-1 (D3), and a control treatment without compost addition (D0). The soil was a shallow sandy-loam (Petrocalcic Palexeralfs) with a depth of 0.60 m and a discontinuous petrocalcic horizon between 0.60 and 0.70 m, slightly basic (pH 8.4), poor in organic matter (0.24%), rich in potassium (410 ppm) and with a medium level of phosphorus (22.1 ppm). During each growing period four harvests were carried out and total and marketable yield (fruits weighting <1 kg or visually rotten were not considered), fruit average weight and fruit number per plant were determined. At the end of the crop cycle, four plants per treatment were sampled and the nutrient content (N, P and K) was determined. Soil samplings (0-30 cm depth) were carried before the application of compost and at the end of each growing season and available N and P, as well as exchangeable K content were analyzed. With this information, an integrated analysis was carried out with the aim to evaluate the suitability of this compost as organic amendment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of inclusion in the diet of different sources of soya bean meal (SBM) on growth performance, total tract apparent digestibility (TTAD) and apparent ileal digestibility (AID) of major dietary components and mucosal ileum morphology were studied in Iberian pigs weaned at 30 days of age. From 30 to 51 days of age (phase I), there was a control diet based on regular soya bean meal (R-SBM; 44% CP) of Argentina (ARG) origin and five extra diets in which a high-protein soya bean meal (HP-SBM; 49% CP) of the USA or ARG origin, either ground (990 ?m) or micronized (60 ?m), or a soya protein concentrate (SPC; 65% CP) substituted the R-SBM. From 51 to 61 days of age (phase II), all pigs were fed a common commercial diet in mash form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxin plays an important role in many aspects of plant development including stress responses. Here we briefly summarize how auxin is involved in salt stress, drought (i.e. mostly osmotic stress), waterlogging and nutrient deficiency in Brassica plants. In addition, some mechanisms to control auxin levels and signaling in relation to root formation (under stress) will be reviewed. Molecular studies are mainly described for the model plant Arabidopsis thaliana, but we also like to demonstrate how this knowledge can be transferred to agriculturally important Brassica species, such as Brassica rapa, Brassica napus and Brassica campestris. Moreover, beneficial fungi could play a role in the adaptation response of Brassica roots to abiotic stresses. Therefore, the possible influence of Piriformospora indica will also be covered since the growth promoting response of plants colonized by P. indica is also linked to plant hormones, among them auxin.