3 resultados para Numerical analyses
em Universidad Politécnica de Madrid
Resumo:
La presente Tesis Doctoral aborda la aplicación de métodos meshless, o métodos sin malla, a problemas de autovalores, fundamentalmente vibraciones libres y pandeo. En particular, el estudio se centra en aspectos tales como los procedimientos para la resolución numérica del problema de autovalores con estos métodos, el coste computacional y la viabilidad de la utilización de matrices de masa o matrices de rigidez geométrica no consistentes. Además, se acomete en detalle el análisis del error, con el objetivo de determinar sus principales fuentes y obtener claves que permitan la aceleración de la convergencia. Aunque en la actualidad existe una amplia variedad de métodos meshless en apariencia independientes entre sí, se han analizado las diferentes relaciones entre ellos, deduciéndose que el método Element-Free Galerkin Method [Método Galerkin Sin Elementos] (EFGM) es representativo de un amplio grupo de los mismos. Por ello se ha empleado como referencia en este análisis. Muchas de las fuentes de error de un método sin malla provienen de su algoritmo de interpolación o aproximación. En el caso del EFGM ese algoritmo es conocido como Moving Least Squares [Mínimos Cuadrados Móviles] (MLS), caso particular del Generalized Moving Least Squares [Mínimos Cuadrados Móviles Generalizados] (GMLS). La formulación de estos algoritmos indica que la precisión de los mismos se basa en los siguientes factores: orden de la base polinómica p(x), características de la función de peso w(x) y forma y tamaño del soporte de definición de esa función. Se ha analizado la contribución individual de cada factor mediante su reducción a un único parámetro cuantificable, así como las interacciones entre ellos tanto en distribuciones regulares de nodos como en irregulares. El estudio se extiende a una serie de problemas estructurales uni y bidimensionales de referencia, y tiene en cuenta el error no sólo en el cálculo de autovalores (frecuencias propias o carga de pandeo, según el caso), sino también en términos de autovectores. This Doctoral Thesis deals with the application of meshless methods to eigenvalue problems, particularly free vibrations and buckling. The analysis is focused on aspects such as the numerical solving of the problem, computational cost and the feasibility of the use of non-consistent mass or geometric stiffness matrices. Furthermore, the analysis of the error is also considered, with the aim of identifying its main sources and obtaining the key factors that enable a faster convergence of a given problem. Although currently a wide variety of apparently independent meshless methods can be found in the literature, the relationships among them have been analyzed. The outcome of this assessment is that all those methods can be grouped in only a limited amount of categories, and that the Element-Free Galerkin Method (EFGM) is representative of the most important one. Therefore, the EFGM has been selected as a reference for the numerical analyses. Many of the error sources of a meshless method are contributed by its interpolation/approximation algorithm. In the EFGM, such algorithm is known as Moving Least Squares (MLS), a particular case of the Generalized Moving Least Squares (GMLS). The accuracy of the MLS is based on the following factors: order of the polynomial basis p(x), features of the weight function w(x), and shape and size of the support domain of this weight function. The individual contribution of each of these factors, along with the interactions among them, has been studied in both regular and irregular arrangement of nodes, by means of a reduction of each contribution to a one single quantifiable parameter. This assessment is applied to a range of both one- and two-dimensional benchmarking cases, and includes not only the error in terms of eigenvalues (natural frequencies or buckling load), but also of eigenvectors
Resumo:
The pressuremeter test in boreholes has proven itself as a useful tool in geotechnical explorations, especially comparing its results with those obtained from a mathematical model ruled by a soil representative constitutive equation. The numerical model shown in this paper is aimed to be the reference framework for the interpretation of this test. The model analyses variables such as: the type of response, the initial state, the drainage regime and the constitutive equations. It is a model of finite elements able to work with a mesh without deformation or one adapted to it.
Resumo:
It has been reasoned that the structures of strongly cellular flames in very lean mixtures approach an array of flame balls, each burning as if it were isolated, thereby indicating a connection between the critical conditions required for existence of steady flame balls and those necessary for occurrence of self-sustained premixed combustion. This is the starting assumption of the present study, in which structures of near-limit steady sphericosym-metrical flame balls are investigated with the objective of providing analytic expressions for critical combustion conditions in ultra-lean hydrogen-oxygen mixtures diluted with N2 and water vapor. If attention were restricted to planar premixed flames, then the lean-limit mole fraction of H2 would be found to be roughly ten percent, more than twice the observed flammability limits, thereby emphasizing the relevance of the flame-ball phenomena. Numerical integrations using detailed models for chemistry and radiation show that a onestep chemical-kinetic reduced mechanism based on steady-state assumptions for all chemical intermediates, together with a simple, optically thin approximation for water-vapor radiation, can be used to compute near-limit fuel-lean flame balls with excellent accuracy. The previously developed one-step reaction rate includes a crossover temperature that determines in the first approximation a chemical-kinetic lean limit below which combustión cannot occur, with critical conditions achieved when the diffusion-controlled radiation-free peak temperature, computed with account taken of hydrogen Soret diffusion, is equal to the crossover temperature. First-order corrections are found by activation-energy asymptotics in a solution that involves a near-field radiation-free zone surrounding a spherical flame sheet, together with a far-field radiation-conduction balance for the temperature profile. Different scalings are found depending on whether or not the surrounding atmosphere contains wáter vapor, leading to different analytic expressions for the critical conditions for flame-ball existence, which give results in very good agreement with those obtained by detailed numerical computations.