30 resultados para Numerical Problems
em Universidad Politécnica de Madrid
Resumo:
Flat or worn wheels rolling on rough or corrugated tracks can provoke airborne noise and ground-borne vibration, which can be a serious concern for nearby neighbours of urban rail transit lines. Among the various treatments used to reduce vibration and noise, resilient wheels play an important role. In conventional resilient wheels, a slightly prestressed Vshaped rubber ring is mounted between the steel wheel centre and tyre. The elastic layer enhances rolling noise and vibration suppression, as well as impact reduction on the track. In this paper the effectiveness of resilient wheels in underground lines, in comparison to monobloc ones, is assessed. The analysed resilient wheel is able to carry greater loads than standard resilient wheels used for light vehicles. It also presents a greater radial resiliency and a higher axial stiffness than conventional Vwheels. The finite element method was used in this study. A quarter car model was defined, in which the wheelset was modelled as an elastic body. Several simulations were performed in order to assess the vibrational behaviour of elastic wheels, including modal, harmonic and random vibration analysis, the latter allowing the introduction of realistic vertical track irregularities, as well as the influence of the running speed. Due to numerical problems some simplifications were needed. Parametric variations were also performed, in which the sensitivity of the whole system to variations of rubber prestress and Poisson’s ratio of the elastic material was assessed.Results are presented in the frequency domain, showing a better performance of the resilient wheels for frequencies over 200 Hz. This result reveals the ability of the analyzed design to mitigate rolling noise, but not structural vibrations, which are primarily found in the lower frequency range.
Resumo:
Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic programming (and more recently, constraint programming) resulting in quite capable parallelizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc.
Resumo:
Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers.
Resumo:
Hoy día nadie discute la importancia de predecir el comportamiento vibroacústico de estructuras (edificios, vehículos aeronaves, satélites). También se ha hecho patente, con el tiempo, que el rango espectral en el que la respuesta es importante se ha desplazado hacia alta frecuencia en prácticamente todos los campos. Esto ha hecho que los métodos de análisis en este rango alto de frecuencias cobren importancia y actualidad. Uno de los métodos más extendidos para este fin es el basado en el Análisis Estadístico de la Energía, SEA. Es un método que ha mostrado proporcionar un buen equilibrio entre potencia de calculo, precisión y fiabilidad. En un SEA el sistema (estructura, cavidades o aire circundante) se modela mediante una matriz de coeficientes que dependen directamente de los factores de pérdidas de las distintas partes del sistema. Formalmente es un método de análisis muy cómodo e intuitivo de manejar cuya mayor dificultad es precisamente la determinación de esos factores de pérdidas. El catálogo de expresiones analíticas o numéricas para su determinación no es suficientemente amplio por lo que normalmente siempre se suele acabar necesitando hacer uso de herramientas experimentales, ya sea para su obtención o la comprobación de los valores utilizados. La determinación experimental tampoco está exenta de problemas, su obtención necesita de configuraciones experimentales grandes y complejas con requisitos que pueden llegar a ser muy exigentes y en las que además, se ven involucrados problemas numéricos relacionados con los valores de los propios factores de pérdidas, el valor relativo entre ellos y las características de las matrices que conforman. Este trabajo estudia la caracterización de sistemas vibroacústicos mediante el análisis estadístico de energía. Se centra en la determinación precisa de los valores de los factores de pérdidas. Dados los problemas que puede presentar un sistema experimental de estas características, en una primera parte se estudia la influencia de todas las magnitudes que intervienen en la determinación de los factores de pérdidas mediante un estudio de incertidumbres relativas, que, por medio de los coeficientes de sensibilidad normalizados, indicará la importancia de cada una de las magnitudes de entrada (esencialmente energías y potencias) en los resultados. De esta parte se obtiene una visión general sobre a qué mensurados se debe prestar más atención, y de qué problemas pueden ser los que más influyan en la falta de estabilidad (o incoherencia) de los resultados. Además, proporciona un modelo de incertidumbres válido para los casos estudiados y ha permitido evaluar el error cometido por algún método utilizado habitualmente para la caracterización de factores de pérdidas como la aproximación a 2 subsistemas En una segunda parte se hace uso de las conclusiones obtenidas en la primera, de forma que el trabajo se orienta en dos direcciones. Una dirigida a la determi nación suficientemente fiel de la potencia de entrada que permita simplificar en lo posible la configuración experimental. Otra basada en un análisis detallado de las propiedades de la matriz que caracteriza un SEA y que conduce a la propuesta de un método para su determinación robusta, basada en un filtrado de Montecarlo y que, además, muestra cómo los problemas numéricos de la matriz SEA pueden no ser tan insalvables como se apunta en la literatura. Por último, además, se plantea una solución al caso en el que no todos los subsistemas en los que se divide el sistema puedan ser excitados. El método propuesto aquí no permite obtener el conjunto completo de coeficientes necesarios para definir un sistema, pero el solo hecho de poder obtener conjuntos parciales ya es un avance importante y, sobre todo, abre la puerta al desarrollo de métodos que permitan relajar de forma importante las exigencias que la determinación experimental de matrices SEA tiene. ABSTRACT At present there is an agreement about the importance to predict the vibroacoustic response of structures (buildings, vehicles, aircrafts, satellites, etc.). In addition, there has become clear over the time that the frequency range over which the response is important has been shift to higher frequencies in almost all the engineering fields. As a consequence, the numerical methods for high frequency analysis have increase in importance. One the most widespread methods for this type of analysis is the one based on the Statistical Energy Analysis, SEA. This method has shown to provide a good balance among calculation power, accuracy and liability. Within a SEA, a system (structure, cavities, surrounding air) is modeled by a coefficients matrix that depends directly on the loss factors of the different parts of the system. Formally, SEA is a very handy and intuitive analysis method whose greatest handicap is precisely the determination of the loss factors. The existing set of analytical or numerical equations to obtain the loss factor values is not enough, so that usually it is necessary to use experimental techniques whether it is to its determination to to check the estimated values by another mean. The experimental determination presents drawbacks, as well. To obtain them great and complex experimental setups are needed including requirements that can be very demanding including numerical problems related to the values of the loss factors themselves, their relative value and the characteristics of the matrices they define. The present work studies the characterization of vibroacousti systems by this SEA method. It focuses on the accurate determination of the loss factors values. Given all the problems an experimental setup of these characteristics can show, the work is divided in two parts. In the first part, the influence of all the quantities involved on the determination of the loss factors is studied by a relative uncertainty estimation, which, by means of the normalised sensitivity coefficients, will provide an insight about the importance of every input quantities (energies and input powers, mainly) on the final result. Besides, this part, gives an uncertainty model that has allowed assessing the error of one of the methods more widely used to characterize the loss factors: the 2-subsystem approach. In the second part, use of the former conclusions is used. An equation for the input power into the subsystems is proposed. This equation allows simplifying the experimental setup without changing the liability of the test. A detailed study of the SEA matrix properties leads to propose a robust determination method of this SEA matrix by a Monte Carlo filtering. In turn, this new method shows how the numerical problems of the SEA matrix can be overcome Finally, a solution is proposed for the case where not all the subsystems are excited. The method proposed do not allows obtaining the whole set of coefficients of the SEA matrix, but the simple fact of getting partial sets of loss factors is a significant advance and, over all, it opens the door to the development of new methods that loosen the requirements that an experimental determination of a SEA matrix have.
Resumo:
After the extensive research on the capabilities of the Boundary Integral Equation Method produced during the past years the versatility of its applications has been well founded. Maybe the years to come will see the in-depth analysis of several conflictive points, for example, adaptive integration, solution of the system of equations, etc. This line is clear in academic research. In this paper we comment on the incidence of the manner of imposing the boundary conditions in 3-D coupled problems. Here the effects are particularly magnified: in the first place by the simple model used (constant elements) and secondly by the process of solution, i.e. first a potential problem is solved and then the results are used as data for an elasticity problem. The errors add to both processes and small disturbances, unimportant in separated problems, can produce serious errors in the final results. The specific problem we have chosen is especially interesting. Although more general cases (i.e. transient)can be treated, here the domain integrals can be converted into boundary ones and the influence of the manner in which boundary conditions are applied will reflect the whole importance of the problem.
Resumo:
A new method is presented to generate reduced order models (ROMs) in Fluid Dynamics problems of industrial interest. The method is based on the expansion of the flow variables in a Proper Orthogonal Decomposition (POD) basis, calculated from a limited number of snapshots, which are obtained via Computational Fluid Dynamics (CFD). Then, the POD-mode amplitudes are calculated as minimizers of a properly defined overall residual of the equations and boundary conditions. The method includes various ingredients that are new in this field. The residual can be calculated using only a limited number of points in the flow field, which can be scattered either all over the whole computational domain or over a smaller projection window. The resulting ROM is both computationally efficient(reconstructed flow fields require, in cases that do not present shock waves, less than 1 % of the time needed to compute a full CFD solution) and flexible(the projection window can avoid regions of large localized CFD errors).Also, for problems related with aerodynamics, POD modes are obtained from a set of snapshots calculated by a CFD method based on the compressible Navier Stokes equations and a turbulence model (which further more includes some unphysical stabilizing terms that are included for purely numerical reasons), but projection onto the POD manifold is made using the inviscid Euler equations, which makes the method independent of the CFD scheme. In addition, shock waves are treated specifically in the POD description, to avoid the need of using a too large number of snapshots. Various definitions of the residual are also discussed, along with the number and distribution of snapshots, the number of retained modes, and the effect of CFD errors. The method is checked and discussed on several test problems that describe (i) heat transfer in the recirculation region downstream of a backwards facing step, (ii) the flow past a two-dimensional airfoil in both the subsonic and transonic regimes, and (iii) the flow past a three-dimensional horizontal tail plane. The method is both efficient and numerically robust in the sense that the computational effort is quite small compared to CFD and results are both reasonably accurate and largely insensitive to the definition of the residual, to CFD errors, and to the CFD method itself, which may contain artificial stabilizing terms. Thus, the method is amenable for practical engineering applications. Resumen Se presenta un nuevo método para generar modelos de orden reducido (ROMs) aplicado a problemas fluidodinámicos de interés industrial. El nuevo método se basa en la expansión de las variables fluidas en una base POD, calculada a partir de un cierto número de snapshots, los cuales se han obtenido gracias a simulaciones numéricas (CFD). A continuación, las amplitudes de los modos POD se calculan minimizando un residual global adecuadamente definido que combina las ecuaciones y las condiciones de contorno. El método incluye varios ingredientes que son nuevos en este campo de estudio. El residual puede calcularse utilizando únicamente un número limitado de puntos del campo fluido. Estos puntos puede encontrarse dispersos a lo largo del dominio computacional completo o sobre una ventana de proyección. El modelo ROM obtenido es tanto computacionalmente eficiente (en aquellos casos que no presentan ondas de choque reconstruir los campos fluidos requiere menos del 1% del tiempo necesario para calcular una solución CFD) como flexible (la ventana de proyección puede escogerse de forma que evite contener regiones con errores en la solución CFD localizados y grandes). Además, en problemas aerodinámicos, los modos POD se obtienen de un conjunto de snapshots calculados utilizando un código CFD basado en la versión compresible de las ecuaciones de Navier Stokes y un modelo de turbulencia (el cual puede incluir algunos términos estabilizadores sin sentido físico que se añaden por razones puramente numéricas), aunque la proyección en la variedad POD se hace utilizando las ecuaciones de Euler, lo que hace al método independiente del esquema utilizado en el código CFD. Además, las ondas de choque se tratan específicamente en la descripción POD para evitar la necesidad de utilizar un número demasiado grande de snapshots. Varias definiciones del residual se discuten, así como el número y distribución de los snapshots,el número de modos retenidos y el efecto de los errores debidos al CFD. El método se comprueba y discute para varios problemas de evaluación que describen (i) la transferencia de calor en la región de recirculación aguas abajo de un escalón, (ii) el flujo alrededor de un perfil bidimensional en regímenes subsónico y transónico y (iii) el flujo alrededor de un estabilizador horizontal tridimensional. El método es tanto eficiente como numéricamente robusto en el sentido de que el esfuerzo computacional es muy pequeño comparado con el requerido por el CFD y los resultados son razonablemente precisos y muy insensibles a la definición del residual, los errores debidos al CFD y al método CFD en sí mismo, el cual puede contener términos estabilizadores artificiales. Por lo tanto, el método puede utilizarse en aplicaciones prácticas de ingeniería.
Resumo:
In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
García et al. present a class of column generation (CG) algorithms for nonlinear programs. Its main motivation from a theoretical viewpoint is that under some circumstances, finite convergence can be achieved, in much the same way as for the classic simplicial decomposition method; the main practical motivation is that within the class there are certain nonlinear column generation problems that can accelerate the convergence of a solution approach which generates a sequence of feasible points. This algorithm can, for example, accelerate simplicial decomposition schemes by making the subproblems nonlinear. This paper complements the theoretical study on the asymptotic and finite convergence of these methods given in [1] with an experimental study focused on their computational efficiency. Three types of numerical experiments are conducted. The first group of test problems has been designed to study the parameters involved in these methods. The second group has been designed to investigate the role and the computation of the prolongation of the generated columns to the relative boundary. The last one has been designed to carry out a more complete investigation of the difference in computational efficiency between linear and nonlinear column generation approaches. In order to carry out this investigation, we consider two types of test problems: the first one is the nonlinear, capacitated single-commodity network flow problem of which several large-scale instances with varied degrees of nonlinearity and total capacity are constructed and investigated, and the second one is a combined traffic assignment model
Resumo:
A method, using boundary elements, is presented as a solution to plane transient heat conduction. The proposed method considers the governing equation to be a Helmholtz's equation and solves the problem of time variation using step by step integration. A numerical procedure is developed and its effectiveness verified. Several examples are provided and their results compared with the theoretical ones.
Resumo:
The numerical analysis of certain safety related problems presents serious difficulties, since the large number of components present leads to huge finite elementmodels that can only be solved by using large and expensive computers or by making rough approaches to the problem. Tangling, or clashing, in the turbine of a jet engine airplane is an example of such problems. This is caused by the crash and friction between rotor and stator blades in the turbine after an eventual shaft failure. When facing the study of an event through numerical modelling, the accurate simulation of this problem would require the engineer to model all the rotor and stator blades existing in the turbine stage, using a small element size in all pieces. Given that the number of stator and rotor blades is usually around 200, such simulations would require millions of elements. This work presents a new numerical methodology, specifically developed for the accurate modelling of the tangling problem that, depending on the turbine configuration, is able to reduce the number of nodes up to an order of magnitude without losing accuracy. The methodology, which benefits from the cyclic configuration of turbines, is successfully applied to the numerical analysis of a hypothetical tangling event in a turbine, providing valuable data such as the rotating velocity decrease of the turbine, the braking torque and the damage suffered by the blades. The methodology is somewhat general and can be applied to any problem in which damage caused by the interaction between a rotating and static piece is to be analysed.
Resumo:
In this paper, a fully automatic goal-oriented hp-adaptive finite element strategy for open region electromagnetic problems (radiation and scattering) is presented. The methodology leads to exponential rates of convergence in terms of an upper bound of an user-prescribed quantity of interest. Thus, the adaptivity may be guided to provide an optimal error, not globally for the field in the whole finite element domain, but for specific parameters of engineering interest. For instance, the error on the numerical computation of the S-parameters of an antenna array, the field radiated by an antenna, or the Radar Cross Section on given directions, can be minimized. The efficiency of the approach is illustrated with several numerical simulations with two dimensional problem domains. Results include the comparison with the previously developed energy-norm based hp-adaptivity.
Resumo:
In this paper we present the application of BIEM to elastoplastic axysimetric problems. After a brief presentation of the basic integral formulation we introduce the discretizing and iterative process for its resolution. Simple problems are compared in order to test the possibilities of the method and we finish commenting on future research needs.
Resumo:
In this work, robustness and stability of continuum damage models applied to material failure in soft tissues are addressed. In the implicit damage models equipped with softening, the presence of negative eigenvalues in the tangent elemental matrix degrades the condition number of the global matrix, leading to a reduction of the computational performance of the numerical model. Two strategies have been adapted from literature to improve the aforementioned computational performance degradation: the IMPL-EX integration scheme [Oliver,2006], which renders the elemental matrix contribution definite positive, and arclength-type continuation methods [Carrera,1994], which allow to capture the unstable softening branch in brittle ruptures. The IMPL-EX integration scheme has as a major drawback the need to use small time steps to keep numerical error below an acceptable value. A convergence study, limiting the maximum allowed increment of internal variables in the damage model, is presented. Finally, numerical simulation of failure problems with fibre reinforced materials illustrates the performance of the adopted methodology.
Resumo:
The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.