3 resultados para Nonsmooth Calculus
em Universidad Politécnica de Madrid
Resumo:
In this paper, calculus of variations and combined blade element and momentum theory (BEMT) are used to demonstrate that, in hover, when neither root nor tip losses are considered; the rotor, which minimizes the total power (MPR), generates an induced velocity that varies linearly along the blade span. The angle of attack of every blade element is constant and equal to its optimum value. The traditional ideal twist (ITR) and optimum (OR) rotors are revisited in the context of this variational framework. Two more optimum rotors are obtained considering root and tip losses, the ORL, and the MPRL. A comparison between these five rotors is presented and discussed. The MPR and MPRL present a remarkable saving of power for low values of both thrust coefficient and maximum aerodynamic efficiency. The result obtained can be exploited to improve the aerodynamic behaviour of rotary wing micro air vehicles (MAV). A comparison with experimental results obtained from the literature is presented.
Resumo:
The new Spanish Regulation in Building Acoustic establishes values and limits for the different acoustic magnitudes whose fulfillment can be verify by means field measurements. In this sense, an essential aspect of a field measurement is to give the measured magnitude and the uncertainty associated to such a magnitude. In the calculus of the uncertainty it is very usual to follow the uncertainty propagation method as described in the Guide to the expression of Uncertainty in Measurements (GUM). Other option is the numerical calculus based on the distribution propagation method by means of Monte Carlo simulation. In fact, at this stage, it is possible to find several publications developing this last method by using different software programs. In the present work, we used Excel for the Monte Carlo simulation for the calculus of the uncertainty associated to the different magnitudes derived from the field measurements following ISO 140-4, 140-5 and 140-7. We compare the results with the ones obtained by the uncertainty propagation method. Although both methods give similar values, some small differences have been observed. Some arguments to explain such differences are the asymmetry of the probability distributions associated to the entry magnitudes,the overestimation of the uncertainty following the GUM
Resumo:
A toolbox is a set of procedures taking advantage of the computing power and graphical capacities of a CAS. With these procedures the students can solve math problems, apply mathematics to engineering or simply reinforce the learning of certain mathematical concepts. From the point of view of their construction, we can consider two types of toolboxes: (i) the closed box, built by the teacher, in which the utility files are provided to the students together with the respective tutorials and several worksheets with proposed exercises and problems,