33 resultados para Nonlinear differential equation
em Universidad Politécnica de Madrid
Resumo:
Four-dimensional flow in the phase space of three amplitudes of circularly polarized Alfven waves and one relative phase, resulting from a resonant three-wave truncation of the derivative nonlinear Schrödinger equation, has been analyzed; wave 1 is linearly unstable with growth rate , and waves 2 and 3 are stable with damping 2 and 3, respectively. The dependence of gross dynamical features on the damping model as characterized by the relation between damping and wave-vector ratios, 2 /3, k2 /k3, and the polarization of the waves, is discussed; two damping models, Landau k and resistive k2, are studied in depth. Very complex dynamics, such as multiple blue sky catastrophes and chaotic attractors arising from Feigenbaum sequences, and explosive bifurcations involving Intermittency-I chaos, are shown to be associated with the existence and loss of stability of certain fixed point P of the flow. Independently of the damping model, P may only exist as against flow contraction just requiring.In the case of right-hand RH polarization, point P may exist for all models other than Landau damping; for the resistive model, P may exist for RH polarization only if 2+3/2.
Resumo:
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185-1191, 2010) and Elaskar et al. (Physica A. 390:2759-2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation {Mathematical expression}, where {Mathematical expression} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases {Mathematical expression} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data
Resumo:
We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Resumo:
El principal objetivo de la tesis es estudiar el acoplamiento entre los subsistemas de control de actitud y de control térmico de un pequeño satélite, con el fin de buscar la solución a los problemas relacionados con la determinación de los parámetros de diseño. Se considera la evolución de la actitud y de las temperaturas del satélite bajo la influencia de dos estrategias de orientación diferentes: 1) estabilización magnética pasiva de la orientación (PMAS, passive magnetic attitude stabilization), y 2) control de actitud magnético activo (AMAC, active magnetic attitude control). En primer lugar se presenta el modelo matemático del problema, que incluye la dinámica rotacional y el modelo térmico. En el problema térmico se considera un satélite cúbico modelizado por medio de siete nodos (seis externos y uno interno) aplicando la ecuación del balance térmico. Una vez establecido el modelo matemático del problema, se estudia la evolución que corresponde a las dos estrategias mencionadas. La estrategia PMAS se ha seleccionado por su simplicidad, fiabilidad, bajo coste, ahorrando consumo de potencia, masa coste y complejidad, comparado con otras estrategias. Se ha considerado otra estrategia de control que consigue que el satélite gire a una velocidad requerida alrededor de un eje deseado de giro, pudiendo controlar su dirección en un sistema inercial de referencia, ya que frecuentemente el subsistema térmico establece requisitos de giro alrededor de un eje del satélite orientado en una dirección perpendicular a la radiación solar incidente. En relación con el problema térmico, para estudiar la influencia de la velocidad de giro en la evolución de las temperaturas en diversos puntos del satélite, se ha empleado un modelo térmico linealizado, obtenido a partir de la formulación no lineal aplicando un método de perturbaciones. El resultado del estudio muestra que el tiempo de estabilización de la temperatura y la influencia de las cargas periódicas externas disminuye cuando aumenta la velocidad de giro. Los cambios de temperatura se reducen hasta ser muy pequeños para velocidades de rotación altas. En relación con la estrategia PMAC se ha observado que a pesar de su uso extendido entre los micro y nano satélites todavía presenta problemas que resolver. Estos problemas están relacionados con el dimensionamiento de los parámetros del sistema y la predicción del funcionamiento en órbita. Los problemas aparecen debido a la dificultad en la determinación de las características magnéticas de los cuerpos ferromagnéticos (varillas de histéresis) que se utilizan como amortiguadores de oscilaciones en los satélites. Para estudiar este problema se presenta un modelo analítico que permite estimar la eficiencia del amortiguamiento, y que se ha aplicado al estudio del comportamiento en vuelo de varios satélites, y que se ha empleado para comparar los resultados del modelo con los obtenidos en vuelo, observándose que el modelo permite explicar satisfactoriamente el comportamiento registrado. ABSTRACT The main objective of this thesis is to study the coupling between the attitude control and thermal control subsystems of a small satellite, and address the solution to some existing issues concerning the determination of their parameters. Through the thesis the attitude and temperature evolution of the satellite is studied under the influence of two independent attitude stabilization and control strategies: (1) passive magnetic attitude stabilization (PMAS), and (2) active magnetic attitude control (AMAC). In this regard the mathematical model of the problem is explained and presented. The mathematical model includes both the rotational dynamics and the thermal model. The thermal model is derived for a cubic satellite by solving the heat balance equation for 6 external and 1 internal nodes. Once established the mathematical model of the problem, the above mentioned attitude strategies were applied to the system and the temperature evolution of the 7 nodes of the satellite was studied. The PMAS technique has been selected to be studied due to its prevalent use, simplicity, reliability, and cost, as this strategy significantly saves the overall power, weight, cost, and reduces the complexity of the system compared to other attitude control strategies. In addition to that, another control law that provides the satellite with a desired spin rate along a desired axis of the satellite, whose direction can be controlled with respect to the inertial reference frame is considered, as the thermal subsystem of a satellite usually demands a spin requirement around an axis of the satellite which is positioned perpendicular to the direction of the coming solar radiation. Concerning the thermal problem, to study the influence of spin rate on temperature evolution of the satellite a linear approach of the thermal model is used, which is based on perturbation theory applied to the nonlinear differential equations of the thermal model of a spacecraft moving in a closed orbit. The results of this study showed that the temperature stabilization time and the periodic influence of the external thermal loads decreases by increasing the spin rate. However, the changes become insignificant for higher values of spin rate. Concerning the PMAS strategy, it was observed that in spite of its extended application to micro and nano satellites, still there are some issues to be solved regarding this strategy. These issues are related to the sizing of its system parameters and predicting the in-orbit performance. The problems were found to be rooted in the difficulties that exist in determining the magnetic characteristics of the ferromagnetic bodies (hysteresis rods) that are applied as damping devices on-board satellites. To address these issues an analytic model for estimating their damping efficiency is proposed and applied to several existing satellites in order to compare the results with their respective in-flight data. This model can explain the behavior showed by these satellites.
Resumo:
This work discusses an iterative procedure of shaping offset dual-reflector antennas based on geometrical optics considering both far-field and near-field measurements of amplitude and phase from the feed horn. The surfaces synthesized will transform a known radiation field of a feed to a desired aperture distribution. This technique is applied for both circular and elliptical apertures and has the advantage to simplify the problem compared with existing techniques based on solving nonlinear differential equations. A MATLAB tool has been developed to implement the shaping algorithms. This procedure is applied for the design of a 1.1 m high-gain antenna for the ESA’s Solar Orbiter spacecraft. This antenna operating at X-band will manage high data rate and high efficiency communications with Earth stations.
Resumo:
En esta Tesis Doctoral se aborda la utilización de filtros de difusión no lineal para obtener imágenes constantes a trozos como paso previo al proceso de segmentación. En una primera parte se propone un formulación intrínseca para la ecuación de difusión no lineal que proporcione las condiciones de diseño necesarias sobre los filtros de difusión. A partir del marco teórico propuesto, se proporciona una nueva familia de difusividades; éstas son obtenidas a partir de técnicas de difusión no lineal relacionadas con los procesos de difusión regresivos. El objetivo es descomponer la imagen en regiones cerradas que sean homogéneas en sus niveles de grises sin contornos difusos. Asimismo, se prueba que la función de difusividad propuesta satisface las condiciones de un correcto planteamiento semi-discreto. Esto muestra que mediante el esquema semi-implícito habitualmente utilizado, realmente se hace un proceso de difusión no lineal directa, en lugar de difusión inversa, conectando con proceso de preservación de bordes. Bajo estas condiciones establecidas, se plantea un criterio de parada para el proceso de difusión, para obtener imágenes constantes a trozos con un bajo coste computacional. Una vez aplicado todo el proceso al caso unidimensional, se extienden los resultados teóricos, al caso de imágenes en 2D y 3D. Para el caso en 3D, se detalla el esquema numérico para el problema evolutivo no lineal, con condiciones de contorno Neumann homogéneas. Finalmente, se prueba el filtro propuesto para imágenes reales en 2D y 3D y se ilustran los resultados de la difusividad propuesta como método para obtener imágenes constantes a trozos. En el caso de imágenes 3D, se aborda la problemática del proceso previo a la segmentación del hígado, mediante imágenes reales provenientes de Tomografías Axiales Computarizadas (TAC). En ese caso, se obtienen resultados sobre la estimación de los parámetros de la función de difusividad propuesta. This Ph.D. Thesis deals with the case of using nonlinear diffusion filters to obtain piecewise constant images as a previous process for segmentation techniques. I have first shown an intrinsic formulation for the nonlinear diffusion equation to provide some design conditions on the diffusion filters. According to this theoretical framework, I have proposed a new family of diffusivities; they are obtained from nonlinear diffusion techniques and are related with backward diffusion. Their goal is to split the image in closed contours with a homogenized grey intensity inside and with no blurred edges. It has also proved that the proposed filters satisfy the well-posedness semi-discrete and full discrete scale-space requirements. This shows that by using semi-implicit schemes, a forward nonlinear diffusion equation is solved, instead of a backward nonlinear diffusion equation, connecting with an edgepreserving process. Under the conditions established for the diffusivity and using a stopping criterion I for the diffusion time, I have obtained piecewise constant images with a low computational effort. The whole process in the one-dimensional case is extended to the case where 2D and 3D theoretical results are applied to real images. For 3D, develops in detail the numerical scheme for nonlinear evolutionary problem with homogeneous Neumann boundary conditions. Finally, I have tested the proposed filter with real images for 2D and 3D and I have illustrated the effects of the proposed diffusivity function as a method to get piecewise constant images. For 3D I have developed a preprocess for liver segmentation with real images from CT (Computerized Tomography). In this case, I have obtained results on the estimation of the parameters of the given diffusivity function.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
Combining the kinematical definitions of the two dimensionless parameters, the deceleration q(x) and the Hubble t 0 H(x), we get a differential equation (where x=t/t 0 is the age of the universe relative to its present value t 0). First integration gives the function H(x). The present values of the Hubble parameter H(1) [approximately t 0 H(1)≈1], and the deceleration parameter [approximately q(1)≈−0.5], determine the function H(x). A second integration gives the cosmological scale factor a(x). Differentiation of a(x) gives the speed of expansion of the universe. The evolution of the universe that results from our approach is: an initial extremely fast exponential expansion (inflation), followed by an almost linear expansion (first decelerated, and later accelerated). For the future, at approximately t≈3t 0 there is a final exponential expansion, a second inflation that produces a disaggregation of the universe to infinity. We find the necessary and sufficient conditions for this disaggregation to occur. The precise value of the final age is given only with one parameter: the present value of the deceleration parameter [q(1)≈−0.5]. This emerging picture of the history of the universe represents an important challenge, an opportunity for the immediate research on the Universe. These conclusions have been elaborated without the use of any particular cosmological model of the universe
Resumo:
We consider non-negative solution of a chemotaxis system with non constant chemotaxis sensitivity function X. This system appears as a limit case of a model formorphogenesis proposed by Bollenbach et al. (Phys. Rev. E. 75, 2007).Under suitable boundary conditions, modeling the presence of a morphogen source at x=0, we prove the existence of a global and bounded weak solution using an approximation by problems where diffusion is introduced in the ordinary differential equation. Moreover,we prove the convergence of the solution to the unique steady state provided that ? is small and ? is large enough. Numerical simulations both illustrate these results and give rise to further conjectures on the solution behavior that go beyond the rigorously proved statements.
Resumo:
Abstract?We consider a mathematical model related to the stationary regime of a plasma of fusion nuclear, magnetically confined in a Stellarator device. Using the geometric properties of the fusion device, a suitable system of coordinates and averaging methods, the mathematical problem may be reduced to a two dimensional free boundary problem of nonlocal type, where the corresponding differential equation is of the Grad?Shafranov type. The current balance within each flux magnetic gives us the possibility to define the third covariant magnetic field component with respect to the averaged poloidal flux function. We present here some numerical experiences and we give some numerical approach for the averaged poloidal flux and for the third covariant magnetic field component.
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
A linear method is developed for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. This method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. This method is applied to a minimal thermal model of a satellite with ten isothermal parts (nodes), and the method is compared with direct numerical integration of the nonlinear equations. The computational complexity of this method is briefly studied for general thermal models of orbiting spacecraft, and it is concluded that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.
Resumo:
A hybrid Eulerian-Lagrangian approach is employed to simulate heavy particle dispersion in turbulent pipe flow. The mean flow is provided by the Eulerian simulations developed by mean of JetCode, whereas the fluid fluctuations seen by particles are prescribed by a stochastic differential equation based on normalized Langevin. The statistics of particle velocity are compared to LES data which contain detailed statistics of velocity for particles with diameter equal to 20.4 µm. The model is in good agreement with the LES data for axial mean velocity whereas rms of axial and radial velocities should be adjusted.
Resumo:
The physical appearance of granular media suggests the existence of geometrical scale invariance. The paper discuss how this physico-empirical property can be mathematically encoded leading to different generative models: a smooth one encoded by a differential equation and another encoded by an equation coming from a measure theoretical property.