22 resultados para Non-thermal lensing effect

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely known the anular-shaped beam divergence produced by the optical reorientation induced in nematics by a Gaussian beam. Recent works have found a new effect in colored liquid crystal (MBBA, Phase V,...) showing a similar spatial distribution. A new set of random-oscillating rings appears for light intensities over a certain threshold. The beam divergence due to that effect is greater than the molecular reorientation induced one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a general situation a non-uniform velocity field gives rise to a shift of the otherwise straight acoustic pulse trajectory between the transmitter and receiver transducers of a sonic anemometer. The aim of this paper is to determine the effects of trajectory shifts on the velocity as measured by the sonic anemometer. This determination has been accomplished by developing a mathematical model of the measuring process carried out by sonic anemometers; a model which includes the non-straight trajectory effect. The problem is solved by small perturbation techniques, based on the relevant small parameter of the problem, the Mach number of the reference flow, M. As part of the solution, a general analytical expression for the deviations of the computed measured speed from the nominal speed has been obtained. The correction terms of both the transit time and of the measured speed are of M 2 order in rotational velocity field. The method has been applied to three simple, paradigmatic flows: one-directional horizontal and vertical shear flows, and mixed with a uniform horizontal flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis se centra en el estudio de medios granulares blandos y atascados mediante la aplicación de la física estadística. Esta aproximación se sitúa entre los tradicionales enfoques macro y micromecánicos: trata de establecer cuáles son las propiedades macroscópicas esperables de un sistema granular en base a un análisis de las propiedades de las partículas y las interacciones que se producen entre ellas y a una consideración de las restricciones macroscópicas del sistema. Para ello se utiliza la teoría estadística junto con algunos principios, conceptos y definiciones de la teoría de los medios continuos (campo de tensiones y deformaciones, energía potencial elástica, etc) y algunas técnicas de homogeneización. La interacción entre las partículas es analizada mediante las aportaciones de la teoría del contacto y de las fuerzas capilares (producidas por eventuales meniscos de líquido cuando el medio está húmedo). La idea básica de la mecánica estadística es que entre todas soluciones de un problema físico (como puede ser el ensamblaje en equilibrio estático de partículas de un medio granular) existe un conjunto que es compatible con el conocimiento macroscópico que tenemos del sistema (por ejemplo, su volumen, la tensión a la que está sometido, la energía potencial elástica que almacena, etc.). Este conjunto todavía contiene un número enorme de soluciones. Pues bien, si no hay ninguna información adicional es razonable pensar que no existe ningún motivo para que alguna de estas soluciones sea más probable que las demás. Entonces parece natural asignarles a todas ellas el mismo peso estadístico y construir una función matemática compatible. Actuando de este modo se obtiene cuál es la función de distribución más probable de algunas cantidades asociadas a las soluciones, para lo cual es muy importante asegurarse de que todas ellas son igualmente accesibles por el procedimiento de ensamblaje o protocolo. Este enfoque se desarrolló en sus orígenes para el estudio de los gases ideales pero se puede extender para sistemas no térmicos como los analizados en esta tesis. En este sentido el primer intento se produjo hace poco más de veinte años y es la colectividad de volumen. Desde entonces esta ha sido empleada y mejorada por muchos investigadores en todo el mundo, mientras que han surgido otras, como la de la energía o la del fuerza-momento (tensión multiplicada por volumen). Cada colectividad describe, en definitiva, conjuntos de soluciones caracterizados por diferentes restricciones macroscópicas, pero de todos ellos resultan distribuciones estadísticas de tipo Maxwell-Boltzmann y controladas por dichas restricciones. En base a estos trabajos previos, en esta tesis se ha adaptado el enfoque clásico de la física estadística para el caso de medios granulares blandos. Se ha propuesto un marco general para estudiar estas colectividades que se basa en la comparación de todas las posibles soluciones en un espacio matemático definido por las componentes del fuerza-momento y en unas funciones de densidad de estados. Este desarrollo teórico se complementa con resultados obtenidos mediante simulación de la compresión cíclica de sistemas granulares bidimensionales. Se utilizó para ello un método de dinámica molecular, MD (o DEM). Las simulaciones consideran una interacción mecánica elástica, lineal y amortiguada a la que se ha añadido, en algunos casos, la fuerza cohesiva producida por meniscos de agua. Se realizaron cálculos en serie y en paralelo. Los resultados no solo prueban que las funciones de distribución de las componentes de fuerza-momento del sistema sometido a un protocolo específico parecen ser universales, sino que también revelan que existen muchos aspectos computacionales que pueden determinar cuáles son las soluciones accesibles. This thesis focuses on the application of statistical mechanics for the study of static and jammed packings of soft granular media. Such approach lies between micro and macromechanics: it tries to establish what the expected macroscopic properties of a granular system are, by starting from a micromechanical analysis of the features of the particles, and the interactions between them, and by considering the macroscopic constraints of the system. To do that, statistics together with some principles, concepts and definitions of continuum mechanics (e.g. stress and strain fields, elastic potential energy, etc.) as well as some homogenization techniques are used. The interaction between the particles of a granular system is examined too and theories on contact and capillary forces (when the media are wet) are revisited. The basic idea of statistical mechanics is that among the solutions of a physical problem (e.g. the static arrangement of particles in mechanical equilibrium) there is a class that is compatible with our macroscopic knowledge of the system (volume, stress, elastic potential energy,...). This class still contains an enormous number of solutions. In the absence of further information there is not any a priori reason for favoring one of these more than any other. Hence we shall naturally construct the equilibrium function by assigning equal statistical weights to all the functions compatible with our requirements. This procedure leads to the most probable statistical distribution of some quantities, but it is necessary to guarantee that all the solutions are likely accessed. This approach was originally set up for the study of ideal gases, but it can be extended to non-thermal systems too. In this connection, the first attempt for granular systems was the volume ensemble, developed about 20 years ago. Since then, this model has been followed and improved upon by many researchers around the world, while other two approaches have also been set up: energy and force-moment (i.e. stress multiplied by volume) ensembles. Each ensemble is described by different macroscopic constraints but all of them result on a Maxwell-Boltzmann statistical distribution, which is precisely controlled by the respective constraints. According to this previous work, in this thesis the classical statistical mechanics approach is introduced and adapted to the case of soft granular media. A general framework, which includes these three ensembles and uses a force-moment phase space and a density of states function, is proposed. This theoretical development is complemented by molecular dynamics (or DEM) simulations of the cyclic compression of 2D granular systems. Simulations were carried out by considering spring-dashpot mechanical interactions and attractive capillary forces in some cases. They were run on single and parallel processors. Results not only prove that the statistical distributions of the force-moment components obtained with a specific protocol seem to be universal, but also that there are many computational issues that can determine what the attained packings or solutions are.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The micrometeorological mass-balance integrated horizontal flux (IHF) technique has been commonly employed for measuring ammonia (NH3) emissions inon-field experiments. However, the inverse-dispersion modeling technique, such as the backward Lagrangian stochastic (bLS) modeling approach, is currently highlighted as offering flexibility in plot design and requiring a minimum number of samplers (Ro et al., 2013). The objective of this study was to make a comparison between the bLS technique with the IHF technique for estimating NH3 emission from flexible bag storage and following landspreading of dairy cattle slurry. Moreover, considering that NH3 emission in storage could have been non uniform, the effect on bLS estimates of a single point and multiple downwind concentration measurements was tested, as proposed by Sanz et al. (2010).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los recientes desarrollos tecnológicos permiten la transición de la oceanografía observacional desde un concepto basado en buques a uno basado en sistemas autónomos en red. Este último, propone que la forma más eficiente y efectiva de observar el océano es con una red de plataformas autónomas distribuidas espacialmente y complementadas con sistemas de medición remota. Debido a su maniobrabilidad y autonomía, los planeadores submarinos están jugando un papel relevante en este concepto de observaciones en red. Los planeadores submarinos fueron específicamente diseñados para muestrear vastas zonas del océano. Estos son robots con forma de torpedo que hacen uso de su forma hidrodinámica, alas y cambios de flotabilidad para generar movimientos horizontales y verticales en la columna de agua. Un sensor que mide conductividad, temperatura y profundidad (CTD) constituye un equipamiento estándar en la plataforma. Esto se debe a que ciertas variables dinámicas del Océano se pueden derivar de la temperatura, profundidad y salinidad. Esta última se puede estimar a partir de las medidas de temperatura y conductividad. La integración de sensores CTD en planeadores submarinos no esta exenta de desafíos. Uno de ellos está relacionado con la precisión de los valores de salinidad derivados de las muestras de temperatura y conductividad. Específicamente, las estimaciones de salinidad están significativamente degradadas por el retardo térmico existente, entre la temperatura medida y la temperatura real dentro de la celda de conductividad del sensor. Esta deficiencia depende de las particularidades del flujo de entrada al sensor, su geometría y, también se ha postulado, del calor acumulado en las capas de aislamiento externo del sensor. Los efectos del retardo térmico se suelen mitigar mediante el control del flujo de entrada al sensor. Esto se obtiene generalmente mediante el bombeo de agua a través del sensor o manteniendo constante y conocida su velocidad. Aunque recientemente se han incorporado sistemas de bombeo en los CTDs a bordo de los planeadores submarinos, todavía existen plataformas equipadas con CTDs sin dichos sistemas. En estos casos, la estimación de la salinidad supone condiciones de flujo de entrada al sensor, razonablemente controladas e imperturbadas. Esta Tesis investiga el impacto, si existe, que la hidrodinámica de los planeadores submarinos pudiera tener en la eficiencia de los sensores CTD. Específicamente, se investiga primero la localización del sensor CTD (externo al fuselaje) relativa a la capa límite desarrollada a lo largo del cuerpo del planeador. Esto se lleva a cabo mediante la utilización de un modelo acoplado de fluido no viscoso con un modelo de capa límite implementado por el autor, así como mediante un programa comercial de dinámica de fluidos computacional (CFD). Los resultados indican, en ambos casos, que el sensor CTD se encuentra fuera de la capa límite, siendo las condiciones del flujo de entrada las mismas que las del flujo sin perturbar. Todavía, la velocidad del flujo de entrada al sensor CTD es la velocidad de la plataforma, la cual depende de su hidrodinámica. Por tal motivo, la investigación se ha extendido para averiguar el efecto que la velocidad de la plataforma tiene en la eficiencia del sensor CTD. Con este propósito, se ha desarrollado un modelo en elementos finitos del comportamiento hidrodinámico y térmico del flujo dentro del CTD. Los resultados numéricos indican que el retardo térmico, atribuidos originalmente a la acumulación de calor en la estructura del sensor, se debe fundamentalmente a la interacción del flujo que atraviesa la celda de conductividad con la geometría interna de la misma. Esta interacción es distinta a distintas velocidades del planeador submarino. Específicamente, a velocidades bajas del planeador (0.2 m/s), la mezcla del flujo entrante con las masas de agua remanentes en el interior de la celda, se ralentiza debido a la generación de remolinos. Se obtienen entonces desviaciones significantes entre la salinidad real y aquella estimada. En cambio, a velocidades más altas del planeador (0.4 m/s) los procesos de mezcla se incrementan debido a la turbulencia e inestabilidades. En consecuencia, la respuesta del sensor CTD es mas rápida y las estimaciones de la salinidad mas precisas que en el caso anterior. Para completar el trabajo, los resultados numéricos se han validado con pruebas experimentales. Específicamente, se ha construido un modelo a escala del sensor CTD para obtener la confirmación experimental de los modelos numéricos. Haciendo uso del principio de similaridad de la dinámica que gobierna los fluidos incompresibles, los experimentos se han realizado con flujos de aire. Esto simplifica significativamente la puesta experimental y facilita su realización en condiciones con medios limitados. Las pruebas experimentales han confirmado cualitativamente los resultados numéricos. Más aun, se sugiere en esta Tesis que la respuesta del sensor CTD mejoraría significativamente añadiendo un generador de turbulencia en localizaciones adecuadas al interno de la celda de conductividad. ABSTRACT Recent technological developments allow the transition of observational oceanography from a ship-based to a networking concept. The latter suggests that the most efficient and effective way to observe the Ocean is through a fleet of spatially distributed autonomous platforms complemented by remote sensing. Due to their maneuverability, autonomy and endurance at sea, underwater gliders are already playing a significant role in this networking observational approach. Underwater gliders were specifically designed to sample vast areas of the Ocean. These are robots with a torpedo shape that make use of their hydrodynamic shape, wings and buoyancy changes to induce horizontal and vertical motions through the water column. A sensor to measure the conductivity, temperature and depth (CTD) is a standard payload of this platform. This is because certain ocean dynamic variables can be derived from temperature, depth and salinity. The latter can be inferred from measurements of temperature and conductivity. Integrating CTD sensors in glider platforms is not exempted of challenges. One of them, concerns to the accuracy of the salinity values derived from the sampled conductivity and temperature. Specifically, salinity estimates are significantly degraded by the thermal lag response existing between the measured temperature and the real temperature inside the conductivity cell of the sensor. This deficiency depends on the particularities of the inflow to the sensor, its geometry and, it has also been hypothesized, on the heat accumulated by the sensor coating layers. The effects of thermal lag are usually mitigated by controlling the inflow conditions through the sensor. Controlling inflow conditions is usually achieved by pumping the water through the sensor or by keeping constant and known its diving speed. Although pumping systems have been recently implemented in CTD sensors on board gliders, there are still platforms with unpumped CTDs. In the latter case, salinity estimates rely on assuming reasonable controlled and unperturbed flow conditions at the CTD sensor. This Thesis investigates the impact, if any, that glider hydrodynamics may have on the performance of onboard CTDs. Specifically, the location of the CTD sensor (external to the hull) relative to the boundary layer developed along the glider fuselage, is first investigated. This is done, initially, by applying a coupled inviscid-boundary layer model developed by the author, and later by using a commercial software for computational fluid dynamics (CFD). Results indicate, in both cases, that the CTD sensor is out of the boundary layer, being its inflow conditions those of the free stream. Still, the inflow speed to the CTD sensor is the speed of the platform, which largely depends on its hydrodynamic setup. For this reason, the research has been further extended to investigate the effect of the platform speed on the performance of the CTD sensor. A finite element model of the hydrodynamic and thermal behavior of the flow inside the CTD sensor, is developed for this purpose. Numerical results suggest that the thermal lag effect is mostly due to the interaction of the flow through the conductivity cell and its geometry. This interaction is different at different speeds of the glider. Specifically, at low glider speeds (0.2 m/s), the mixing of recent and old waters inside the conductivity cell is slowed down by the generation of coherent eddy structures. Significant departures between real and estimated values of the salinity are found. Instead, mixing is enhanced by turbulence and instabilities for high glider speeds (0.4 m/s). As a result, the thermal response of the CTD sensor is faster and the salinity estimates more accurate than for the low speed case. For completeness, numerical results have been validated against model tests. Specifically, a scaled model of the CTD sensor was built to obtain experimental confirmation of the numerical results. Making use of the similarity principle of the dynamics governing incompressible fluids, experiments are carried out with air flows. This significantly simplifies the experimental setup and facilitates its realization in a limited resource condition. Model tests qualitatively confirm the numerical findings. Moreover, it is suggested in this Thesis that the response of the CTD sensor would be significantly improved by adding small turbulators at adequate locations inside the conductivity cell.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A new effect producing self-focusing of light in a nematic MBBA film is reported. This effect produces a static diffraction pattern composed of circular rings which is different from the ones arising from self-focusing previously reported. The influence of the cell thickness, the optical intensity, and the wavelength is studied. Once the nematic is distorted by a láser beam, the effect produced in other light beam passing through the modified región is independent of its polarization. This isotropic behavior shows that a molecular reorientation has not been produced. The origin of this effect seems to be the same of that of the effect which produces a randomly oscillating diffraction pattern previously reported by our group. Some possible causes such as thermal indexing, convective instabilities and self-induced transparency are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Gliadins are a major component of gluten proteins but their role in the mixing of dough is not well understood because their contribution to wheat flour functional properties are not as clear as for the glutenin fraction. Methodology/Principal Findings Transgenic lines of bread wheat with γ-gliadins suppressed by RNAi are reported. The effects on the gluten protein composition and on technological properties of flour were analyzed by RP-HPLC, by sodium dodecyl sulfate sedimentation (SDSS) test and by Mixograph analysis. The silencing of γ-gliadins by RNAi in wheat lines results in an increase in content of all other gluten proteins. Despite the gluten proteins compensation, in silico analysis of amino acid content showed no difference in the γ-gliadins silenced lines. The SDSS test and Mixograph parameters were slightly affected by the suppression of γ-gliadins. Conclusions/Significance Therefore, it is concluded that γ-gliadins do not have an essential functional contribution to the bread-making quality of wheat dough, and their role can be replaced by other gluten proteins

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La termografía infrarroja (TI) es una técnica no invasiva y de bajo coste que permite, con el simple acto de tomar una fotografía, el registro sin contacto de la energía que irradia el cuerpo humano (Akimov & Son’kin, 2011, Merla et al., 2005, Ng et al., 2009, Costello et al., 2012, Hildebrandt et al., 2010). Esta técnica comenzó a utilizarse en el ámbito médico en los años 60, pero debido a los malos resultados como herramienta diagnóstica y la falta de protocolos estandarizados (Head & Elliot, 2002), ésta se dejó de utilizar en detrimento de otras técnicas más precisas a nivel diagnóstico. No obstante, las mejoras tecnológicas de la TI en los últimos años han hecho posible un resurgimiento de la misma (Jiang et al., 2005, Vainer et al., 2005, Cheng et al., 2009, Spalding et al., 2011, Skala et al., 2012), abriendo el camino a nuevas aplicaciones no sólo centradas en el uso diagnóstico. Entre las nuevas aplicaciones, destacamos las que se desarrollan en el ámbito de la actividad física y el deporte, donde recientemente se ha demostrado que los nuevos avances con imágenes de alta resolución pueden proporcionar información muy interesante sobre el complejo sistema de termorregulación humana (Hildebrandt et al., 2010). Entre las nuevas aplicaciones destacan: la cuantificación de la asimilación de la carga de trabajo físico (Čoh & Širok, 2007), la valoración de la condición física (Chudecka et al., 2010, 2012, Akimov et al., 2009, 2011, Merla et al., 2010), la prevención y seguimiento de lesiones (Hildebrandt et al., 2010, 2012, Badža et al., 2012, Gómez Carmona, 2012) e incluso la detección de agujetas (Al-Nakhli et al., 2012). Bajo estas circunstancias, se acusa cada vez más la necesidad de ampliar el conocimiento sobre los factores que influyen en la aplicación de la TI en los seres humanos, así como la descripción de la respuesta de la temperatura de la piel (TP) en condiciones normales, y bajo la influencia de los diferentes tipos de ejercicio. Por consiguiente, este estudio presenta en una primera parte una revisión bibliográfica sobre los factores que afectan al uso de la TI en los seres humanos y una propuesta de clasificación de los mismos. Hemos analizado la fiabilidad del software Termotracker, así como su reproducibilidad de la temperatura de la piel en sujetos jóvenes, sanos y con normopeso. Finalmente, se analizó la respuesta térmica de la piel antes de un entrenamiento de resistencia, velocidad y fuerza, inmediatamente después y durante un período de recuperación de 8 horas. En cuanto a la revisión bibliográfica, hemos propuesto una clasificación para organizar los factores en tres grupos principales: los factores ambientales, individuales y técnicos. El análisis y descripción de estas influencias deben representar la base de nuevas investigaciones con el fin de utilizar la TI en las mejores condiciones. En cuanto a la reproducibilidad, los resultados mostraron valores excelentes para imágenes consecutivas, aunque la reproducibilidad de la TP disminuyó ligeramente con imágenes separadas por 24 horas, sobre todo en las zonas con valores más fríos (es decir, zonas distales y articulaciones). Las asimetrías térmicas (que normalmente se utilizan para seguir la evolución de zonas sobrecargadas o lesionadas) también mostraron excelentes resultados pero, en este caso, con mejores valores para las articulaciones y el zonas centrales (es decir, rodillas, tobillos, dorsales y pectorales) que las Zonas de Interés (ZDI) con valores medios más calientes (como los muslos e isquiotibiales). Los resultados de fiabilidad del software Termotracker fueron excelentes en todas las condiciones y parámetros. En el caso del estudio sobre los efectos de los entrenamientos de la velocidad resistencia y fuerza en la TP, los resultados muestran respuestas específicas según el tipo de entrenamiento, zona de interés, el momento de la evaluación y la función de las zonas analizadas. Los resultados mostraron que la mayoría de las ZDI musculares se mantuvieron significativamente más calientes 8 horas después del entrenamiento, lo que indica que el efecto del ejercicio sobre la TP perdura por lo menos 8 horas en la mayoría de zonas analizadas. La TI podría ser útil para cuantificar la asimilación y recuperación física después de una carga física de trabajo. Estos resultados podrían ser muy útiles para entender mejor el complejo sistema de termorregulación humano, y por lo tanto, para utilizar la TI de una manera más objetiva, precisa y profesional con visos a mejorar las nuevas aplicaciones termográficas en el sector de la actividad física y el deporte Infrared Thermography (IRT) is a safe, non-invasive and low-cost technique that allows the rapid and non-contact recording of the irradiated energy released from the body (Akimov & Son’kin, 2011; Merla et al., 2005; Ng et al., 2009; Costello et al., 2012; Hildebrandt et al., 2010). It has been used since the early 1960’s, but due to poor results as diagnostic tool and a lack of methodological standards and quality assurance (Head et al., 2002), it was rejected from the medical field. Nevertheless, the technological improvements of IRT in the last years have made possible a resurgence of this technique (Jiang et al., 2005; Vainer et al., 2005; Cheng et al., 2009; Spalding et al., 2011; Skala et al., 2012), paving the way to new applications not only focused on the diagnose usages. Among the new applications, we highlighted those in physical activity and sport fields, where it has been recently proven that a high resolution thermal images can provide us with interesting information about the complex thermoregulation system of the body (Hildebrandt et al., 2010), information than can be used as: training workload quantification (Čoh & Širok, 2007), fitness and performance conditions (Chudecka et al., 2010, 2012; Akimov et al., 2009, 2011; Merla et al., 2010; Arfaoui et al., 2012), prevention and monitoring of injuries (Hildebrandt et al., 2010, 2012; Badža et al., 2012, Gómez Carmona, 2012) and even detection of Delayed Onset Muscle Soreness – DOMS- (Al-Nakhli et al., 2012). Under this context, there is a relevant necessity to broaden the knowledge about factors influencing the application of IRT on humans, and to better explore and describe the thermal response of Skin Temperature (Tsk) in normal conditions, and under the influence of different types of exercise. Consequently, this study presents a literature review about factors affecting the application of IRT on human beings and a classification proposal about them. We analysed the reliability of the software Termotracker®, and also its reproducibility of Tsk on young, healthy and normal weight subjects. Finally, we examined the Tsk thermal response before an endurance, speed and strength training, immediately after and during an 8-hour recovery period. Concerning the literature review, we proposed a classification to organise the factors into three main groups: environmental, individual and technical factors. Thus, better exploring and describing these influence factors should represent the basis of further investigations in order to use IRT in the best and optimal conditions to improve its accuracy and results. Regarding the reproducibility results, the outcomes showed excellent values for consecutive images, but the reproducibility of Tsk slightly decreased with time, above all in the colder Regions of Interest (ROI) (i.e. distal and joint areas). The side-to-side differences (ΔT) (normally used to follow the evolution of some injured or overloaded ROI) also showed highly accurate results, but in this case with better values for joints and central ROI (i.e. Knee, Ankles, Dorsal and Pectoral) than the hottest muscle ROI (as Thigh or Hamstrings). The reliability results of the IRT software Termotracker® were excellent in all conditions and parameters. In the part of the study about the effects on Tsk of aerobic, speed and strength training, the results of Tsk demonstrated specific responses depending on the type of training, ROI, moment of the assessment and the function of the considered ROI. The results showed that most of muscular ROI maintained warmer significant Tsk 8 hours after the training, indicating that the effect of exercise on Tsk last at least 8 hours in most of ROI, as well as IRT could help to quantify the recovery status of the athlete as workload assimilation indicator. Those results could be very useful to better understand the complex skin thermoregulation behaviour, and therefore, to use IRT in a more objective, accurate and professional way to improve the new IRT applications for the physical activity and sport sector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systematic data on the effect of irradiation with swift ions (Zn at 735 MeV and Xe at 929 MeV) on NaCl single crystals have been analysed in terms of a synergetic two-spike approach (thermal and excitation spikes). The coupling of the two spikes, simultaneously generated by the irradiation, contributes to the operation of a non-radiative exciton decay model as proposed for purely ionization damage. Using this scheme, we have accounted for the π-emission yield of self-trapped excitons and its temperature dependence under ion-beam irradiation. Moreover, the initial production rates of F-centre growth have also been reasonably simulated for irradiation at low temperatures ( < 100 K), where colour centre annealing and aggregation can be neglected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thermal smoothing in the plasma ablated from a laser target under weakly nonuniform irradiation is analyzed, assuming absorption at nc and a deflagration regime (conduction restricted to a thin quasisteady layer next to the target). Magnetic generation effects are included and found to be weak. Differences from results available in the literature are explained; the importance of the character of the underdense flow at uniform irradiation is emphasized.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZnCdO nanowires with up to 45% Cd are demonstrated showing room temperature photoluminescence (PL) down to 2.02 eV and a radiative efficiency similar to that of ZnO nanowires. Analysis of the microstructure in individual nanowires confirms the presence of a single wurtzite phase even at the highest Cd contents, with a homogeneous distribution of Cd both in the longitudinal and transverse directions. Thermal annealing at 550 °C yields an overall improvement of the PL, which is blue-shifted as a result of the homogeneous decrease of Cd throughout the nanowire, but the single wurtzite structure is fully maintained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.