11 resultados para Non-government organization

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help spread knowledge about nuclear energy, not only pointing out its advantages and its role in our society, but also trying to correct some of the ideas that are due to the biased information and to the lack of knowledge. To try to have success in that goal, some high school lectures were taught and it has been organized regularly a Basic Course on Nuclear Science and Technology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From its creation, Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE), has as an important scope to help transferring the knowledge between those generations in the way that it can be possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of this course, conducted by Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN), a non-profit organization that depends on the Spanish Nuclear Society (SNE) is to pass on basic knowledge about Science and Nuclear Technology to the general public, mostly students and introduce them to its most relevant points. The purposes of this course are to provide general information, to answer the most common questions about Nuclear Energy and to motivate the young students to start a career in nuclear. Therefore, it is directed mainly to high school and university students, but also to general people that wants to learn about the key issues of such an important matter in our society. Anybody could attend the course, as no specific scientific education is required. The course is done at least once a year, during the Annual Meeting of the Spanish Nuclear Society, which takes place in a different Spanish city each time. The course is done also to whichever university or institution that asks for it to JJNN, with the only limit of the presenter´s availability. The course is divided into the following chapters: Physical nuclear and radiation principles, Nuclear power plants, Nuclear safety, Nuclear fuel, Radioactive waste, Decommission of nuclear facilities, Future nuclear power plants, Other uses of nuclear technology, Nuclear energy, climate change and sustainable development. The course is divided into 15 minutes lessons on the above topics, imparted by young professionals, experts in the field that belongs either to the Spanish Young Generation in Nuclear, either to companies and institutions related with nuclear energy. At the end of the course, a 200 pages book with the contents of the course is handed to every member of the audience. This book is also distributed in other course editions at high schools and universities in order to promote the scientific dissemination of the Nuclear Technology. As an extra motivation, JJNN delivers a course certificate to the assistants. At the end of the last edition course, in Santiago de Compostela, the assistants were asked to provide a feedback about it. Some really interesting lessons were learned, that will be very useful to improve next editions of the course. As a general conclusion of the courses it can be said that many of the students that have assisted to the course have increased their motivation in the nuclear field, and hopefully it will help the young talents to choose the nuclear field to develop their careers

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN) is a non-profit organization and a commission of the Spanish Nuclear Society (SNE). The Universidad Politécnica de Madrid (Technical University of Madrid, UPM) is one of the most prestigious technical universities of Spain, and has a very strong curriculum in nuclear engineering training and research. Finishing 2009, JJNN and the UPM started to plan a new and first-of-a-kind Seminar in Nuclear Safety focused on the Advanced Reactors (Generation III, III+ and IV). The scope was to make a general description of the safety in the new reactors, comparing them with the built Generation II reactors from a technical point of view but simple and without the need of strong background in nuclear engineering to try to be interesting for the most number of people possible.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spanish Young Generation in Nuclear (Jóvenes Nucleares, JJNN) is a non-profrt organization that depends on the Spanish Nuclear Society (Sociedad Nuclear Española, SNE).Since one of rts main goals is to spread the knowledge about nuclear power,severa! technical tours to facilities wrth an importan!role in the nuclear fuel cycle have been organized for the purpose ofleaming about the different stages of the Spanish tuel cycle. Spanish Young Generation in Nuclear had the opportunity to visit ENUSA Fuel Assembly Factory in Juzbado (Salamanca, Spain), Where it could be understood the front-end cycle which involves the uranium supply and storage, design and manufacturing of fuel bundles for European nuclear power plants. Alterwards, due to the tour of Almaraz NPP (PWR) and Santa María de Garoña NPP (BWR), rt could be comprehended how to obtain energy from this fuel in two different types of reactors.Furthermore,in these two plants, the facilities related to the back-end cycle could be toured. lt was possible to watch the Spent FuelPools, where the fuel bundles are stored under water until their activity is reduced enough to transport them to an Individual Temporary Storage Facility orto the Centralized Temporary Storage. Finally, a technical tour to ENSA Heavy Components Factory (ENSA) was accomplished, Where it could be experienced at first hand how different Nuclear Steam Supply System (NSSS) components and other nuclear elements, such as racks or shipping and storage casks for spent nuclear fuel, are manulactured. All these perlonned technical tours were a complete success thanks to a generous care and know-how of the wor1

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jóvenes Nucleares (Spanish Young Generation in Nuclear, JJNN) is a non-profit organization that depends on the Spanish Nuclear Society (SNE). The Universidad Politécnica de Madrid (Technical University of Madrid, UPM) was chosen to host the Seminar as it is one of the most prestigious technical universities of Spain, and has a very strong curriculum in nuclear engineering training and research. Both, the UPM and the SNE, supported strongly the seminar: the opening session was conducted by the member of to board of directors of the Spanish Nuclear Society and Nuclear Engineering professor of the UPM, Emilio Mínguez and the closing session was conducted by the director of the Nuclear Fusion Institute (UPM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present, many countries allow citizens or entities to interact with the government outside the telematic environment through a legal representative who is granted powers of representation. However, if the interaction takes place through the Internet, only primitive mechanisms of representation are available, and these are mainly based on non-dynamic offline processes that do not enable quick and easy identity delegation. This paper proposes a system of dynamic delegation of identity between two generic entities that can solve the problem of delegated access to the telematic services provided by public authorities. The solution herein is based on the generation of a delegation token created from a proxy certificate that allows the delegating entity to delegate identity to another on the basis of a subset of its attributes as delegator, while also establishing in the delegation token itself restrictions on the services accessible to the delegated entity and the validity period of delegation. Further, the paper presents the mechanisms needed to either revoke a delegation token or to check whether a delegation token has been revoked. Implications for theory and practice and suggestions for future research are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This exploratory study presents a comparison between two samples of microenterprises. One sample is formed by companies involved in product innovation during the current economic crisis and the other is formed by companies not involved in product innovation during the same period. The comparison analyzes which internal factors, supported by the literature as the influential factors of small business innovation, are significant when explaining the main differences between innovative microenterprise and non-innovative ones. The results suggest that the factors related to the organization and activity of the company are the factors which explain the differences between these two types of firms, rather than those factors related to micro-entrepreneurs own profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apples can be considered as having a complex system formed by several structures at different organization levels: macroscale (mayor que100 ?m) and microscale (menor que100 ?m). This work implements 2D T1/T2 global and localized relaxometry sequences on whole apples to be able to perform an intensive non-destructive and non-invasive microstructure study. The 2D T1/T2 cross-correlation spectroscopy allows the extraction of quantitative information about the water compartmentation in different subcellular organelles. A clear difference is found as sound apples show neat peaks for water in different subcellular compartments, such as vacuolar, cytoplasmatic and extracellular water, while in watercore-affected tissues such compartments appear merged. Localized relaxometry allows for the predefinition of slices in order to understand the microstructure of a particular region of the fruit, providing information that cannot be derived from global 2D T1/T2 relaxometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apples can be considered as having a complex system formed by several structures at different organization levels: macroscale (>100 μm) and microscale (<100 μm). This work implements 2D T1/T2 global and localized relaxometry sequences on whole apples to be able to perform an intensive non-destructive and non-invasive microstructure study. The 2D T1/T2 cross-correlation spectroscopy allows the extraction of quantitative information about the water compartmentation in different subcellular organelles. A clear difference is found as sound apples show neat peaks for water in different subcellular compartments, such as vacuolar, cytoplasmatic and extracellular water, while in watercore-affected tissues such compartments appear merged. Localized relaxometry allows for the predefinition of slices in order to understand the microstructure of a particular region of the fruit, providing information that cannot be derived from global 2D T1/T2 relaxometry.