32 resultados para Non-convex optimization
em Universidad Politécnica de Madrid
Resumo:
This paper shows the Particle Swarm Optimization algorithm with a Differential Evolution. Each candidate solution is sampled in the interval [?5, 5] D where D indicates the dimension of the search space, and the evolution is performed with a classical PSO algorithm and a classical DE/x/1 algorithm according to a random threshold. Moreover, this paper provides concepts to deal with non-linear optimization through the use of PSO.
Resumo:
Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.
Resumo:
El principal objetivo de esta tesis es el desarrollo de métodos de síntesis de diagramas de radiación de agrupaciones de antenas, en donde se realiza una caracterización electromagnética rigurosa de los elementos radiantes y de los acoplos mutuos existentes. Esta caracterización no se realiza habitualmente en la gran mayoría de métodos de síntesis encontrados en la literatura, debido fundamentalmente a dos razones. Por un lado, se considera que el diagrama de radiación de un array de antenas se puede aproximar con el factor de array que únicamente tiene en cuenta la posición de los elementos y las excitaciones aplicadas a los mismos. Sin embargo, como se mostrará en esta tesis, en múltiples ocasiones un riguroso análisis de los elementos radiantes y del acoplo mutuo entre ellos es importante ya que los resultados obtenidos pueden ser notablemente diferentes. Por otro lado, no es sencillo combinar un método de análisis electromagnético con un proceso de síntesis de diagramas de radiación. Los métodos de análisis de agrupaciones de antenas suelen ser costosos computacionalmente, ya que son estructuras grandes en términos de longitudes de onda. Generalmente, un diseño de un problema electromagnético suele comprender varios análisis de la estructura, dependiendo de las variaciones de las características, lo que hace este proceso muy costoso. Dos métodos se utilizan en esta tesis para el análisis de los arrays acoplados. Ambos están basados en el método de los elementos finitos, la descomposición de dominio y el análisis modal para analizar la estructura radiante y han sido desarrollados en el grupo de investigación donde se engloba esta tesis. El primero de ellos es una técnica de análisis de arrays finitos basado en la aproximación de array infinito. Su uso es indicado para arrays planos de grandes dimensiones con elementos equiespaciados. El segundo caracteriza el array y el acoplo mutuo entre elementos a partir de una expansión en modos esféricos del campo radiado por cada uno de los elementos. Este método calcula los acoplos entre los diferentes elementos del array usando las propiedades de traslación y rotación de los modos esféricos. Es capaz de analizar agrupaciones de elementos distribuidos de forma arbitraria. Ambas técnicas utilizan una formulación matricial que caracteriza de forma rigurosa el campo radiado por el array. Esto las hace muy apropiadas para su posterior uso en una herramienta de diseño, como los métodos de síntesis desarrollados en esta tesis. Los resultados obtenidos por estas técnicas de síntesis, que incluyen métodos rigurosos de análisis, son consecuentemente más precisos. La síntesis de arrays consiste en modificar uno o varios parámetros de las agrupaciones de antenas buscando unas determinadas especificaciones de las características de radiación. Los parámetros utilizados como variables de optimización pueden ser varios. Los más utilizados son las excitaciones aplicadas a los elementos, pero también es posible modificar otros parámetros de diseño como son las posiciones de los elementos o las rotaciones de estos. Los objetivos de las síntesis pueden ser dirigir el haz o haces en una determinada dirección o conformar el haz con formas arbitrarias. Además, es posible minimizar el nivel de los lóbulos secundarios o del rizado en las regiones deseadas, imponer nulos que evitan posibles interferencias o reducir el nivel de la componente contrapolar. El método para el análisis de arrays finitos basado en la aproximación de array infinito considera un array finito como un array infinito con un número finito de elementos excitados. Los elementos no excitados están físicamente presentes y pueden presentar tres diferentes terminaciones, corto-circuito, circuito abierto y adaptados. Cada una de estas terminaciones simulará mejor el entorno real en el que el array se encuentre. Este método de análisis se integra en la tesis con dos métodos diferentes de síntesis de diagramas de radiación. En el primero de ellos se presenta un método basado en programación lineal en donde es posible dirigir el haz o haces, en la dirección deseada, además de ejercer un control sobre los lóbulos secundarios o imponer nulos. Este método es muy eficiente y obtiene soluciones óptimas. El mismo método de análisis es también aplicado a un método de conformación de haz, en donde un problema originalmente no convexo (y de difícil solución) es transformado en un problema convexo imponiendo restricciones de simetría, resolviendo de este modo eficientemente un problema complejo. Con este método es posible diseñar diagramas de radiación con haces de forma arbitraria, ejerciendo un control en el rizado del lóbulo principal, así como en el nivel de los lóbulos secundarios. El método de análisis de arrays basado en la expansión en modos esféricos se integra en la tesis con tres técnicas de síntesis de diagramas de radiación. Se propone inicialmente una síntesis de conformación del haz basado en el método de la recuperación de fase resuelta de forma iterativa mediante métodos convexos, en donde relajando las restricciones del problema original se consiguen unas soluciones cercanas a las óptimas de manera eficiente. Dos métodos de síntesis se han propuesto, donde las variables de optimización son las posiciones y las rotaciones de los elementos respectivamente. Se define una función de coste basada en la intensidad de radiación, la cual es minimizada de forma iterativa con el método del gradiente. Ambos métodos reducen el nivel de los lóbulos secundarios minimizando una función de coste. El gradiente de la función de coste es obtenido en términos de la variable de optimización en cada método. Esta función de coste está formada por la expresión rigurosa de la intensidad de radiación y por una función de peso definida por el usuario para imponer prioridades sobre las diferentes regiones de radiación, si así se desea. Por último, se presenta un método en el cual, mediante técnicas de programación entera, se buscan las fases discretas que generan un diagrama de radiación lo más cercano posible al deseado. Con este método se obtienen diseños que minimizan el coste de fabricación. En cada uno de las diferentes técnicas propuestas en la tesis, se presentan resultados con elementos reales que muestran las capacidades y posibilidades que los métodos ofrecen. Se comparan los resultados con otros métodos disponibles en la literatura. Se muestra la importancia de tener en cuenta los diagramas de los elementos reales y los acoplos mutuos en el proceso de síntesis y se comparan los resultados obtenidos con herramientas de software comerciales. ABSTRACT The main objective of this thesis is the development of optimization methods for the radiation pattern synthesis of array antennas in which a rigorous electromagnetic characterization of the radiators and the mutual coupling between them is performed. The electromagnetic characterization is usually overlooked in most of the available synthesis methods in the literature, this is mainly due to two reasons. On the one hand, it is argued that the radiation pattern of an array is mainly influenced by the array factor and that the mutual coupling plays a minor role. As it is shown in this thesis, the mutual coupling and the rigorous characterization of the array antenna influences significantly in the array performance and its computation leads to differences in the results obtained. On the other hand, it is difficult to introduce an analysis procedure into a synthesis technique. The analysis of array antennas is generally expensive computationally as the structure to analyze is large in terms of wavelengths. A synthesis method requires to carry out a large number of analysis, this makes the synthesis problem very expensive computationally or intractable in some cases. Two methods have been used in this thesis for the analysis of coupled antenna arrays, both of them have been developed in the research group in which this thesis is involved. They are based on the finite element method (FEM), the domain decomposition and the modal analysis. The first one obtains a finite array characterization with the results obtained from the infinite array approach. It is specially indicated for the analysis of large arrays with equispaced elements. The second one characterizes the array elements and the mutual coupling between them with a spherical wave expansion of the radiated field by each element. The mutual coupling is computed using the properties of translation and rotation of spherical waves. This method is able to analyze arrays with elements placed on an arbitrary distribution. Both techniques provide a matrix formulation that makes them very suitable for being integrated in synthesis techniques, the results obtained from these synthesis methods will be very accurate. The array synthesis stands for the modification of one or several array parameters looking for some desired specifications of the radiation pattern. The array parameters used as optimization variables are usually the excitation weights applied to the array elements, but some other array characteristics can be used as well, such as the array elements positions or rotations. The desired specifications may be to steer the beam towards any specific direction or to generate shaped beams with arbitrary geometry. Further characteristics can be handled as well, such as minimize the side lobe level in some other radiating regions, to minimize the ripple of the shaped beam, to take control over the cross-polar component or to impose nulls on the radiation pattern to avoid possible interferences from specific directions. The analysis method based on the infinite array approach considers an infinite array with a finite number of excited elements. The infinite non-excited elements are physically present and may have three different terminations, short-circuit, open circuit and match terminated. Each of this terminations is a better simulation for the real environment of the array. This method is used in this thesis for the development of two synthesis methods. In the first one, a multi-objective radiation pattern synthesis is presented, in which it is possible to steer the beam or beams in desired directions, minimizing the side lobe level and with the possibility of imposing nulls in the radiation pattern. This method is very efficient and obtains optimal solutions as it is based on convex programming. The same analysis method is used in a shaped beam technique in which an originally non-convex problem is transformed into a convex one applying symmetry restrictions, thus solving a complex problem in an efficient way. This method allows the synthesis of shaped beam radiation patterns controlling the ripple in the mainlobe and the side lobe level. The analysis method based on the spherical wave expansion is applied for different synthesis techniques of the radiation pattern of coupled arrays. A shaped beam synthesis is presented, in which a convex formulation is proposed based on the phase retrieval method. In this technique, an originally non-convex problem is solved using a relaxation and solving a convex problems iteratively. Two methods are proposed based on the gradient method. A cost function is defined involving the radiation intensity of the coupled array and a weighting function that provides more degrees of freedom to the designer. The gradient of the cost function is computed with respect to the positions in one of them and the rotations of the elements in the second one. The elements are moved or rotated iteratively following the results of the gradient. A highly non-convex problem is solved very efficiently, obtaining very good results that are dependent on the starting point. Finally, an optimization method is presented where discrete digital phases are synthesized providing a radiation pattern as close as possible to the desired one. The problem is solved using linear integer programming procedures obtaining array designs that greatly reduce the fabrication costs. Results are provided for every method showing the capabilities that the above mentioned methods offer. The results obtained are compared with available methods in the literature. The importance of introducing a rigorous analysis into the synthesis method is emphasized and the results obtained are compared with a commercial software, showing good agreement.
Resumo:
Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.
Resumo:
Wireless sensor networks are posed as the new communication paradigm where the use of small, low-complexity, and low-power devices is preferred over costly centralized systems. The spectra of potential applications of sensor networks is very wide, ranging from monitoring, surveillance, and localization, among others. Localization is a key application in sensor networks and the use of simple, efficient, and distributed algorithms is of paramount practical importance. Combining convex optimization tools with consensus algorithms we propose a distributed localization algorithm for scenarios where received signal strength indicator readings are used. We approach the localization problem by formulating an alternative problem that uses distance estimates locally computed at each node. The formulated problem is solved by a relaxed version using semidefinite relaxation technique. Conditions under which the relaxed problem yields to the same solution as the original problem are given and a distributed consensusbased implementation of the algorithm is proposed based on an augmented Lagrangian approach and primaldual decomposition methods. Although suboptimal, the proposed approach is very suitable for its implementation in real sensor networks, i.e., it is scalable, robust against node failures and requires only local communication among neighboring nodes. Simulation results show that running an additional local search around the found solution can yield performance close to the maximum likelihood estimate.
Resumo:
In this paper, a new linear method for optimizing compact low noise oscillators for RF/MW applications will be presented. The first part of this paper makes an overview of Leeson's model. It is pointed out, and it is demonstrates that the phase noise is always the same inside the oscillator loop. It is presented a general phase noise optimization method for reference plane oscillators. The new method uses Transpose Return Relations (RRT) as true loop gain functions for obtaining the optimum values of the elements of the oscillator, whatever scheme it has. With this method, oscillator topologies that have been designed and optimized using negative resistance, negative conductance or reflection coefficient methods, until now, can be studied like a loop gain method. Subsequently, the main disadvantage of Leeson's model is overcome, and now it is not only valid for loop gain methods, but it is valid for any oscillator topology. The last section of this paper lists the steps to be performed to use this method for proper phase noise optimization during the linear design process and before the final non-linear optimization. The power of the proposed RRT method is shown with its use for optimizing a common oscillator, which is later simulated using Harmonic Balance (HB) and manufactured. Then, the comparison of the linear, HB and measurements of the phase noise are compared.
Resumo:
Energy efficiency is a major design issue in the context of Wireless Sensor Networks (WSN). If data is to be sent to a far-away base station, collaborative beamforming by the sensors may help to dis- tribute the load among the nodes and reduce fast battery depletion. However, collaborative beamforming techniques are far from opti- mality and in many cases may be wasting more power than required. In this contribution we consider the issue of energy efficiency in beamforming applications. Using a convex optimization framework, we propose the design of a virtual beamformer that maximizes the network's lifetime while satisfying a pre-specified Quality of Service (QoS) requirement. A distributed consensus-based algorithm for the computation of the optimal beamformer is also provided
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
Usual long, flexible, ED tethers kept vertical by the gravity gradient might be less efficient for deorbiting S/C in near-polar orbits than conventional (Hall, Ion) electrical thrusters. A trade-off study on this application is here presented for tethers kept horizontal and perpendicular to the orbital plane. A tether thus oriented must be rigid and short for structural reasons, requiring a non-convex cross section and a power supply as in the case of electrical thrusters. Very recent developments on bare-tether collection theory allow predicting the current collected by an arbitrary cross section. For the horizontal tether, structural considerations on length play the role of ohmic effects in vertical tethers, in determining the optimal contribution of tether mass to the overall deorbiting system. For a given deorbiting-mission impulse, tether-system mass is minimal at some optimal length that increases weakly with the impulse. The horizontal-tether system may beat both the vertical tether and the electrical thruster as regards mass requirements for a narrow length range centered at about 100 m, allowing, however, for a broad mission-impulse range.
Resumo:
A lo largo del presente trabajo se investiga la viabilidad de la descomposición automática de espectros de radiación gamma por medio de algoritmos de resolución de sistemas de ecuaciones algebraicas lineales basados en técnicas de pseudoinversión. La determinación de dichos algoritmos ha sido realizada teniendo en cuenta su posible implementación sobre procesadores de propósito específico de baja complejidad. En el primer capítulo se resumen las técnicas para la detección y medida de la radiación gamma que han servido de base para la confección de los espectros tratados en el trabajo. Se reexaminan los conceptos asociados con la naturaleza de la radiación electromagnética, así como los procesos físicos y el tratamiento electrónico que se hallan involucrados en su detección, poniendo de relieve la naturaleza intrínsecamente estadística del proceso de formación del espectro asociado como una clasificación del número de detecciones realizadas en función de la energía supuestamente continua asociada a las mismas. Para ello se aporta una breve descripción de los principales fenómenos de interacción de la radiación con la materia, que condicionan el proceso de detección y formación del espectro. El detector de radiación es considerado el elemento crítico del sistema de medida, puesto que condiciona fuertemente el proceso de detección. Por ello se examinan los principales tipos de detectores, con especial hincapié en los detectores de tipo semiconductor, ya que son los más utilizados en la actualidad. Finalmente, se describen los subsistemas electrónicos fundamentales para el acondicionamiento y pretratamiento de la señal procedente del detector, a la que se le denomina con el término tradicionalmente utilizado de Electrónica Nuclear. En lo que concierne a la espectroscopia, el principal subsistema de interés para el presente trabajo es el analizador multicanal, el cual lleva a cabo el tratamiento cualitativo de la señal, y construye un histograma de intensidad de radiación en el margen de energías al que el detector es sensible. Este vector N-dimensional es lo que generalmente se conoce con el nombre de espectro de radiación. Los distintos radionúclidos que participan en una fuente de radiación no pura dejan su impronta en dicho espectro. En el capítulo segundo se realiza una revisión exhaustiva de los métodos matemáticos en uso hasta el momento ideados para la identificación de los radionúclidos presentes en un espectro compuesto, así como para determinar sus actividades relativas. Uno de ellos es el denominado de regresión lineal múltiple, que se propone como la aproximación más apropiada a los condicionamientos y restricciones del problema: capacidad para tratar con espectros de baja resolución, ausencia del concurso de un operador humano (no supervisión), y posibilidad de ser soportado por algoritmos de baja complejidad capaces de ser instrumentados sobre procesadores dedicados de alta escala de integración. El problema del análisis se plantea formalmente en el tercer capítulo siguiendo las pautas arriba mencionadas y se demuestra que el citado problema admite una solución en la teoría de memorias asociativas lineales. Un operador basado en este tipo de estructuras puede proporcionar la solución al problema de la descomposición espectral deseada. En el mismo contexto, se proponen un par de algoritmos adaptativos complementarios para la construcción del operador, que gozan de unas características aritméticas especialmente apropiadas para su instrumentación sobre procesadores de alta escala de integración. La característica de adaptatividad dota a la memoria asociativa de una gran flexibilidad en lo que se refiere a la incorporación de nueva información en forma progresiva.En el capítulo cuarto se trata con un nuevo problema añadido, de índole altamente compleja. Es el del tratamiento de las deformaciones que introducen en el espectro las derivas instrumentales presentes en el dispositivo detector y en la electrónica de preacondicionamiento. Estas deformaciones invalidan el modelo de regresión lineal utilizado para describir el espectro problema. Se deriva entonces un modelo que incluya las citadas deformaciones como una ampliación de contribuciones en el espectro compuesto, el cual conlleva una ampliación sencilla de la memoria asociativa capaz de tolerar las derivas en la mezcla problema y de llevar a cabo un análisis robusto de contribuciones. El método de ampliación utilizado se basa en la suposición de pequeñas perturbaciones. La práctica en el laboratorio demuestra que, en ocasiones, las derivas instrumentales pueden provocar distorsiones severas en el espectro que no pueden ser tratadas por el modelo anterior. Por ello, en el capítulo quinto se plantea el problema de medidas afectadas por fuertes derivas desde el punto de vista de la teoría de optimización no lineal. Esta reformulación lleva a la introducción de un algoritmo de tipo recursivo inspirado en el de Gauss-Newton que permite introducir el concepto de memoria lineal realimentada. Este operador ofrece una capacidad sensiblemente mejorada para la descomposición de mezclas con fuerte deriva sin la excesiva carga computacional que presentan los algoritmos clásicos de optimización no lineal. El trabajo finaliza con una discusión de los resultados obtenidos en los tres principales niveles de estudio abordados, que se ofrecen en los capítulos tercero, cuarto y quinto, así como con la elevación a definitivas de las principales conclusiones derivadas del estudio y con el desglose de las posibles líneas de continuación del presente trabajo.---ABSTRACT---Through the present research, the feasibility of Automatic Gamma-Radiation Spectral Decomposition by Linear Algebraic Equation-Solving Algorithms using Pseudo-Inverse Techniques is explored. The design of the before mentioned algorithms has been done having into account their possible implementation on Specific-Purpose Processors of Low Complexity. In the first chapter, the techniques for the detection and measurement of gamma radiation employed to construct the spectra being used throughout the research are reviewed. Similarly, the basic concepts related with the nature and properties of the hard electromagnetic radiation are also re-examined, together with the physic and electronic processes involved in the detection of such kind of radiation, with special emphasis in the intrinsic statistical nature of the spectrum build-up process, which is considered as a classification of the number of individual photon-detections as a function of the energy associated to each individual photon. Fbr such, a brief description of the most important matter-energy interaction phenomena conditioning the detection and spectrum formation processes is given. The radiation detector is considered as the most critical element in the measurement system, as this device strongly conditions the detection process. Fbr this reason, the characteristics of the most frequent detectors are re-examined, with special emphasis on those of semiconductor nature, as these are the most frequently employed ones nowadays. Finally, the fundamental electronic subsystems for preaconditioning and treating of the signal delivered by the detector, classically addresed as Nuclear Electronics, is described. As far as Spectroscopy is concerned, the subsystem most interesting for the scope covered by the present research is the so-called Multichannel Analyzer, which is devoted to the cualitative treatment of the signal, building-up a hystogram of radiation intensity in the range of energies in which the detector is sensitive. The resulting N-dimensional vector is generally known with the ñame of Radiation Spectrum. The different radio-nuclides contributing to the spectrum of a composite source will leave their fingerprint in the resulting spectrum. Through the second chapter, an exhaustive review of the mathematical methods devised to the present moment to identify the radio-nuclides present in the composite spectrum and to quantify their relative contributions, is reviewed. One of the more popular ones is the so-known Múltiple Linear Regression, which is proposed as the best suited approach according to the constraints and restrictions present in the formulation of the problem, i.e., the need to treat low-resolution spectra, the absence of control by a human operator (un-supervision), and the possibility of being implemented as low-complexity algorithms amenable of being supported by VLSI Specific Processors. The analysis problem is formally stated through the third chapter, following the hints established in this context, and it is shown that the addressed problem may be satisfactorily solved under the point of view of Linear Associative Memories. An operator based on this kind of structures may provide the solution to the spectral decomposition problem posed. In the same context, a pair of complementary adaptive algorithms useful for the construction of the solving operator are proposed, which share certain special arithmetic characteristics that render them specially suitable for their implementation on VLSI Processors. The adaptive nature of the associative memory provides a high flexibility to this operator, in what refers to the progressive inclusión of new information to the knowledge base. Through the fourth chapter, this fact is treated together with a new problem to be considered, of a high interest but quite complex nature, as is the treatment of the deformations appearing in the spectrum when instrumental drifts in both the detecting device and the pre-acconditioning electronics are to be taken into account. These deformations render the Linear Regression Model proposed almost unuseful to describe the resulting spectrum. A new model including the drifts is derived as an extensión of the individual contributions to the composite spectrum, which implies a simple extensión of the Associative Memory, which renders this suitable to accept the drifts in the composite spectrum, thus producing a robust analysis of contributions. The extensión method is based on the Low-Amplitude Perturbation Hypothesis. Experimental practice shows that in certain cases the instrumental drifts may provoke severe distortions in the resulting spectrum, which can not be treated with the before-mentioned hypothesis. To cover also these less-frequent cases, through the fifth chapter, the problem involving strong drifts is treated under the point of view of Non-Linear Optimization Techniques. This reformulation carries the study to the consideration of recursive algorithms based on the Gauss-Newton methods, which allow the introduction of Feed-Back Memories, computing elements with a sensibly improved capability to decompose spectra affected by strong drifts. The research concludes with a discussion of the results obtained in the three main levéis of study considerad, which are presented in chapters third, fourth and fifth, toghether with the review of the main conclusions derived from the study and the outline of the main research lines opened by the present work.
Resumo:
Swarm colonies reproduce social habits. Working together in a group to reach a predefined goal is a social behaviour occurring in nature. Linear optimization problems have been approached by different techniques based on natural models. In particular, Particles Swarm optimization is a meta-heuristic search technique that has proven to be effective when dealing with complex optimization problems. This paper presents and develops a new method based on different penalties strategies to solve complex problems. It focuses on the training process of the neural networks, the constraints and the election of the parameters to ensure successful results and to avoid the most common obstacles when searching optimal solutions.
Resumo:
Non-failure analysis aims at inferring that predicate calis in a program will never fail. This type of information has many applications in functional/logic programming. It is essential for determining lower bounds on the computational cost of calis, useful in the context of program parallelization, instrumental in partial evaluation and other program transformations, and has also been used in query optimization. In this paper, we re-cast the non-failure analysis proposed by Debray et al. as an abstract interpretation, which not only allows to investígate it from a standard and well understood theoretical framework, but has also several practical advantages. It allows us to incorpórate non-failure analysis into a standard, generic abstract interpretation engine. The analysis thus benefits from the fixpoint propagation algorithm, which leads to improved information propagation. Also, the analysis takes advantage of the multi-variance of the generic engine, so that it is now able to infer sepárate non-failure information for different cali patterns. Moreover, the implementation is simpler, and allows to perform non-failure and covering analyses alongside other analyses, such as those for modes and types, in the same framework. Finally, besides the precisión improvements and the additional simplicity, our implementation (in the Ciao/CiaoPP multiparadigm programming system) also shows better efRciency.
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
We present a tutorial overview of Ciaopp, the Ciao system preprocessor. Ciao is a public-domain, next-generation logic programming system, which subsumes ISO-Prolog and is specifically designed to a) be highly extensible via librarles and b) support modular program analysis, debugging, and optimization. The latter tasks are performed in an integrated fashion by Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer properties of program predicates and literals, including types, variable instantiation properties (including modes), non-failure, determinacy, bounds on computational cost, bounds on sizes of terms in the program, etc. Using such analysis information, Ciaopp can find errors at compile-time in programs and/or perform partial verification. Ciaopp checks how programs cali system librarles and also any assertions present in the program or in other modules used by the program. These assertions are also used to genérate documentation automatically. Ciaopp also uses analysis information to perform program transformations and optimizations such as múltiple abstract specialization, parallelization (including granularity control), and optimization of run-time tests for properties which cannot be checked completely at compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks. By design, Ciaopp is a generic tool, which can be easily tailored to perform these and other tasks for different LP and CLP dialects.
Resumo:
We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm programming system, which implements a novel program development framework which uses abstract interpretation as a fundamental tool. The framework uses modular, incremental abstract interpretation to obtain information about the program. This information is used to validate programs, to detect bugs with respect to partial specifications written using assertions (in the program itself and/or in system libraries), to generate and simplify run-time tests, and to perform high-level program transformations such as multiple abstract specialization, parallelization, and resource usage control, all in a provably correct way. In the case of validation and debugging, the assertions can refer to a variety of program points such as procedure entry, procedure exit, points within procedures, or global computations. The system can reason with much richer information than, for example, traditional types. This includes data structure shape (including pointer sharing), bounds on data structure sizes, and other operational variable instantiation properties, as well as procedure-level properties such as determinacy, termination, non-failure, and bounds on resource consumption (time or space cost).