3 resultados para Non verbal
em Universidad Politécnica de Madrid
Resumo:
More children with different versions of speech disorders appear in Russia last decades. This situation reflects general tendency of national health deterioration. Our practical experience shows that close grownups can?t communicate to children with limited health capacity. As a result there arise social disabilities in child development. Speech communication is one of the forms of global communicative interaction process between close grownups and young child in the course of which there is a redistribution of knowledge and ignorance (Nikas Luman,2005). Within a framework of sociocultiral theory of mental growth we consider the appearance of speech communication under any cases of physical illness is possible only under conditions of correctly- organized communication between grownups and young children. (L.S. Vigotski ,2000). The special value in this aspect acquires the study of communication between grownups and young children. For five years we have been conducting the surveys on the problem of communicative contacts between parents and non-verbal children. Analysis of received data gave us the opportunity to systematize peculiar communicative interaction of adults and children who have some lapses in acquiring speech form communication. We have revealed four versions of situational- business communication between close grownups and young children with disabilities in acquiring speech. We have assumed that four versions of situational- business communication negatively affect speech form communication formation.
Resumo:
La metáfora y otros mecanismos imaginativos subyacentes al pensa- miento y lenguaje humanos pueden ser utilizados en el discurso diario y especializado (Lakoff y Johnson 1980; Lakoff y Nuñez 2000). Asimismo pueden aparecer en la comunicación no verbal (Forceville y Urios-Aparisi 2009; Littlemore et al. Este volumen).Partiendo de estudios cognitivos y de la teoría de integración conceptual (Fauconnier 1997; Fauconnier y Turner 2002), este artículo examina la presencia de la metáfora en la ingeniería. Primeramente, se analiza un corpus lingüístico procedente de artículos de investigación de ingeniería civil. Los datos revelan el uso de la metáfora antropomórfica, sobre todo en expresiones relativas a la salud, como “diagnóstico”, “auscultación” o “proceso de curación”. Se exploran además ejemplos de ingeniería cuya fuente son proyecciones conceptuales corporales. Finalmente, abordamos la función de la metáfora visual bajo la teoría de integración conceptual mediante representaciones de ingeniería que evocan la anatomía humana o animal. Metaphor and other imaginative mechanisms that underlie human thought and language such as metonymy are used in everyday and specialised discourse (Lakoff and Johnson 1980; Lakoff and Nuñez 2000) They can also be involved in non- verbal forms of communication (Forceville and Urios-Aparisi 2009; Littlemore et al. this volume). Drawing on metaphor cognitive studies and on conceptual integration theory (Fauconnier 1997; Fauconnier and Turner 2002) this paper examines the occurrence of metaphor in engineering. First, we analyse results from a linguistic corpus formed by research papers from civil engineering journals. These data reveal the use of anthropomorphic metaphor, especially related to health or medical mappings such as “diagnosing”, “auscultation” or “curing”. Then, we explore how engineering notions are instantiated by bodily conceptual mappings according to conceptual integration theory. Finally, the function of visual metaphor is examined with conceptual integration theory by using engineering images evoking parts of human or animal anatomy.
Resumo:
Los recientes avances tecnológicos han encontrado un potencial campo de explotación en la educación asistida por computador. A finales de los años 90 surgió un nuevo campo de investigación denominado Entornos Virtuales Inteligentes para el Entrenamiento y/o Enseñanza (EVIEs), que combinan dos áreas de gran complejidad: Los Entornos Virtuales (EVs) y los Sistemas de Tutoría Inteligente (STIs). De este modo, los beneficios de los entornos 3D (simulación de entornos de alto riesgo o entornos de difícil uso, etc.) pueden combinarse con aquéllos de un STIs (personalización de materias y presentaciones, adaptación de la estrategia de tutoría a las necesidades del estudiante, etc.) para proporcionar soluciones educativas/de entrenamiento con valores añadidos. El Modelo del Estudiante, núcleo de un SIT, representa el conocimiento y características del estudiante, y refleja el proceso de razonamiento del estudiante. Su complejidad es incluso superior cuando los STIs se aplican a EVs porque las nuevas posibilidades de interacción proporcionadas por estos entornos deben considerarse como nuevos elementos de información clave para el modelado del estudiante, incidiendo en todo el proceso educativo: el camino seguido por el estudiante durante su navegación a través de escenarios 3D; el comportamiento no verbal tal como la dirección de la mirada; nuevos tipos de pistas e instrucciones que el módulo de tutoría puede proporcionar al estudiante; nuevos tipos de preguntas que el estudiante puede formular, etc. Por consiguiente, es necesario que la estructura de los STIs, embebida en el EVIE, se enriquezca con estos aspectos, mientras mantiene una estructura clara, estructurada, y bien definida. La mayoría de las aproximaciones al Modelo del Estudiante en STIs y en IVETs no consideran una taxonomía de posibles conocimientos acerca del estudiante suficientemente completa. Además, la mayoría de ellas sólo tienen validez en ciertos dominios o es difícil su adaptación a diferentes STIs. Para vencer estas limitaciones, hemos propuesto, en el marco de esta tesis doctoral, un nuevo mecanismo de Modelado del Estudiante basado en la Ingeniería Ontológica e inspirado en principios pedagógicos, con un modelo de datos sobre el estudiante amplio y flexible que facilita su adaptación y extensión para diferentes STIs y aplicaciones de aprendizaje, además de un método de diagnóstico con capacidades de razonamiento no monótono. El método de diagnóstico es capaz de inferir el estado de los objetivos de aprendizaje contenidos en el SIT y, a partir de él, el estado de los conocimientos del estudiante durante su proceso de aprendizaje. La aproximación almodelado del estudiante propuesta ha sido implementada e integrada en un agente software (el agente de modelado del estudiante) dentro de una plataforma software existente para el desarrollo de EVIEs denominadaMAEVIF. Esta plataforma ha sido diseñada para ser fácilmente configurable para diferentes aplicaciones de aprendizaje. El modelado del estudiante presentado ha sido implementado e instanciado para dos tipos de entornos de aprendizaje: uno para aprendizaje del uso de interfaces gráficas de usuario en una aplicación software y para un Entorno Virtual para entrenamiento procedimental. Además, se ha desarrollado una metodología para guiar en la aplicación del esta aproximación de modelado del estudiante a cada sistema concreto.---ABSTRACT---Recent technological advances have found a potential field of exploitation in computeraided education. At the end of the 90’s a new research field emerged, the so-called Intelligent Virtual Environments for Training and/or Education (IVETs), which combines two areas of great complexity: Virtual Environments (VE) and Intelligent Tutoring Systems (ITS). In this way, the benefits of 3D environments (simulation of high risk or difficult-to-use environments, etc.) may be combined with those of an ITS (content and presentation customization, adaptation of the tutoring strategy to the student requirements, etc.) in order to provide added value educational/training solutions. The StudentModel, core of an ITS, represents the student’s knowledge and characteristics, and reflects the student’s reasoning process. Its complexity is even higher when the ITSs are applied on VEs because the new interaction possibilities offered by these environments must be considered as new key information pieces for student modelling, impacting all the educational process: the path followed by the student during their navigation through 3D scenarios; non-verbal behavior such as gaze direction; new types of hints or instructions that the tutoring module can provide to the student; new question types that the student can ask, etc. Thus, it is necessary for the ITS structure, which is embedded in the IVET, to be enriched by these aspects, while keeping a clear, structured and well defined architecture. Most approaches to SM on ITSs and IVETs don’t consider a complete enough taxonomy of possible knowledge about the student. In addition, most of them have validity only in certain domains or they are hard to be adapted for different ITSs. In order to overcome these limitations, we have proposed, in the framework of this doctoral research project, a newStudentModeling mechanism that is based onOntological Engineering and inspired on pedagogical principles, with a wide and flexible data model about the student that facilitates its adaptation and extension to different ITSs and learning applications, as well as a rich diagnosis method with non-monotonic reasoning capacities. The diagnosis method is able to infer the state of the learning objectives encompassed by the ITS and, fromit, the student’s knowledge state during the student’s process of learning. The proposed student modelling approach has been implemented and integrated in a software agent (the student modeling agent) within an existing software platform for the development of IVETs called MAEVIF. This platform was designed to be easily configurable for different learning applications. The proposed student modeling has been implemented and it has been instantiated for two types of learning environments: one for learning to use the graphical user interface of a software application and a Virtual Environment for procedural training. In addition, a methodology to guide on the application of this student modeling approach to each specific system has been developed.