2 resultados para Noise, Occupational
em Universidad Politécnica de Madrid
Resumo:
In this work, we present a study whose objective is to prove the influence of background noise produced inside university facilities on the brain waves related to attention processes. Recordings of background noise were carried out in study areas inside university facilities. Volunteers were asked to perform an attention test without any background noise but also while being exposed to the sound recordings, and their cerebral activity was recorded through electroencephalography (EEG). After the application of the test in both conditions, changes in the frequency bands related to attention processes (beta 13-30 Hz and theta 4-7 Hz) were studied. The results of this study show that when the students were performing the test while being exposed to background noise, both beta and theta frequency bands decreased statistically significantly. Because attentional improvement is related to increases of the beta and theta waves, we believe that those decreases are directly related to a lack of attention caused by the exposure to background noise. Nevertheless, the results do not allow us to conclude that background noise produced inside university facilities has an influence on the attentional processes.
Resumo:
Noise conditions specifically in areas inside university facilities and its impact on the quality of life of university students aretopics that have received little attention. In this paper, a study of the noise conditions in which university students of various institutions in Madrid carry out their daily studies. A representative number of measurements were carried out using noise dosemeters and dataloggers in order to evaluate the levels of noise, noise dose and exposure to noise during study period and extracurricular activities. The results obtained in these measurements were compared with the recommendations given by current environmental noise regulations.This paper was complemented with a survey to get to know how students perceive the exposure to noise inuniversity environments.