2 resultados para New moon--Visibility

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Various environmental factors may influence the foraging behaviour of seed dispersers which could ultimately affect the seed dispersal process. We examined whether moonlight levels and the presence or absence of rodentshelter affect rodentseedremoval (rate, handling time and time of removal) and seedselection (size and species) among seven oak species. The presence or absence of safe microhabitats was found to be more important than moonlight levels in the removal of seeds. Bright moonlight caused a different temporal distribution of seedremoval throughout the night but only affected the overall removal rates in open microhabitats. Seeds were removed more rapidly in open microhabitat (regardless of the moon phase), decreasing the time allocated to seed discrimination and translocation. Only in open microhabitats did increasing levels of moonlight decrease the time allocated to selection and removal of seeds. As a result, a more precise seedselection was made under shelter, owing to lower levels of predation risk. Rodent ranking preference for species was identical between full/new moon in shelter but not in open microhabitats. For all treatments, species selection by rodents was much stronger than size selection. Nevertheless, heavy seeds, which require more energy and time to be transported, were preferentially removed under shelter, where there is no time restriction to move the seeds. Our findings reveal that seedselection is safety dependent and, therefore, microhabitats in which seeds are located (sheltered versus exposed) and moonlight levels in open areas should be taken into account in rodent food selection studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Si no tenemos en cuenta posibles procesos subyacentes con significado físico, químico, económico, etc., podemos considerar una serie temporal como un mero conjunto ordenado de valores y jugar con él algún inocente juego matemático como transformar dicho conjunto en otro objeto con la ayuda de una operación matemática para ver qué sucede: qué propiedades del conjunto original se conservan, cuáles se transforman y cómo, qué podemos decir de alguna de las dos representaciones matemáticas del objeto con sólo atender a la otra... Este ejercicio sería de cierto interés matemático por sí solo. Ocurre, además, que las series temporales son un método universal de extraer información de sistemas dinámicos en cualquier campo de la ciencia. Esto hace ganar un inesperado interés práctico al juego matemático anteriormente descrito, ya que abre la posibilidad de analizar las series temporales (vistas ahora como evolución temporal de procesos dinámicos) desde una nueva perspectiva. Hemos para esto de asumir la hipótesis de que la información codificada en la serie original se conserva de algún modo en la transformación (al menos una parte de ella). El interés resulta completo cuando la nueva representación del objeto pertencece a un campo de la matemáticas relativamente maduro, en el cual la información codificada en dicha representación puede ser descodificada y procesada de manera efectiva. ABSTRACT Disregarding any underlying process (and therefore any physical, chemical, economical or whichever meaning of its mere numeric values), we can consider a time series just as an ordered set of values and play the naive mathematical game of turning this set into a different mathematical object with the aids of an abstract mapping, and see what happens: which properties of the original set are conserved, which are transformed and how, what can we say about one of the mathematical representations just by looking at the other... This exercise is of mathematical interest by itself. In addition, it turns out that time series or signals is a universal method of extracting information from dynamical systems in any field of science. Therefore, the preceding mathematical game gains some unexpected practical interest as it opens the possibility of analyzing a time series (i.e. the outcome of a dynamical process) from an alternative angle. Of course, the information stored in the original time series should be somehow conserved in the mapping. The motivation is completed when the new representation belongs to a relatively mature mathematical field, where information encoded in such a representation can be effectively disentangled and processed. This is, in a nutshell, a first motivation to map time series into networks.