3 resultados para New York (State). Court of Special Sessions (New York)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The obtaining of multiferroicBiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solidstate reactivity of the Bi2O3–Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solidstatesynthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The obtaining of multiferroic BiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solid state reactivity of the Bi2O3?Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solid state synthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the theoretical analysis of a storage integrated solar thermophotovoltaic (SISTPV) system operating in steady state. These systems combine thermophotovoltaic (TPV) technology and high temperature thermal storage phase-change materials (PCM) in the same unit, providing a great potential in terms of efficiency, cost reduction and storage energy density. The main attraction in the proposed system is its simplicity and modularity compared to conventional Concentrated Solar Power (CSP) technologies. This is mainly due to the absence of moving parts. In this paper we analyze the use of Silicon as the phase change material (PCM). Silicon is an excellent candidate because of its high melting point (1680 K) and its very high latent heat of fusion of 1800 kJ/kg, which is about ten times greater than the conventional PCMs like molten salts. For a simple system configuration, we have demonstrated that overall conversion efficiencies up to ?35% are approachable. Although higher efficiencies are expected by incorporating more advanced devices like multijunction TPV cells, narrow band selective emitters or adopting near-field TPV configurations as well as by enhancing the convective/conductive heat transfer within the PCM. In this paper, we also discuss about the optimum system configurations and provide the general guidelines for designing these systems. Preliminary estimates of night time operations indicate it is possible to achieve over 10 h of operation with a relatively small quantity of Silicon.