3 resultados para Neuropsychiatric disturbs

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new Admittance-based model for electrical noise able to handle Fluctuations and Dissipations of electrical energy, we explain the phase noise of oscillators that use feedback around L-C resonators. We show that Fluctuations produce the Line Broadening of their output spectrum around its mean frequency f0 and that the Pedestal of phase noise far from f0 comes from Dissipations modified by the feedback electronics. The charge noise power 4FkT/R C2/s that disturbs the otherwise periodic fluctuation of charge these oscillators aim to sustain in their L-C-R resonator, is what creates their phase noise proportional to Leeson’s noise figure F and to the charge noise power 4kT/R C2/s of their capacitance C that today’s modelling would consider as the current noise density in A2/Hz of their resistance R. Linked with this (A2/Hz?C2/s) equivalence, R becomes a random series in time of discrete chances to Dissipate energy in Thermal Equilibrium (TE) giving a similar series of discrete Conversions of electrical energy into heat when the resonator is out of TE due to the Signal power it handles. Therefore, phase noise reflects the way oscillators sense thermal exchanges of energy with their environment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Son muchos más de los que creemos, los “edificios modernos” que, abandonados desde hace tiempo, yacen silenciosos y olvidados frente a nuestros ciegos ojos, atentos sólo al simulacro social. La visión de su ruina cuando aparece, no produce en nosotros la misma sensación que la que producen las arquitecturas clásicas del pasado. Esta otra nos desasosiega e inquieta, despertando en nosotros la extrañeza, el desconcierto y, a veces, la culpa. ¿Qué particularidades intervienen y motivan esta contemplación sin nostalgia del pasado? ¿Cómo debemos instalar este fenómeno en el debate arquitectónico actual? Y más específicamente ¿Se puede integrar la ruina moderna en el proceso proyectual contemporáneo?. There are more “modern buildings” than we think that they remain abandoned and forgotten since a long time, in front of our blind eyes, focused only on the social simulacre. The vision of ruin when it appears, does not produce in us the same feeling as that produced by traditional architectures of the past. This one disturbs and us restless, waking us strangeness, confusion and sometimes guilt. What particularities involve and motivate this contemplation without nostalgia for the past? How should we install this phenomenon in the current architectural discussion? And more specifically. Can we integrate modern ruin into the contemporary design process?.